Jun Arii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3204257/publications.pdf

Version: 2024-02-01

361413 302126 1,660 43 20 39 citations h-index g-index papers 45 45 45 1594 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Role of the Arginine Cluster in the Disordered Domain of Herpes Simplex Virus 1 UL34 for the Recruitment of ESCRT-III for Viral Primary Envelopment. Journal of Virology, 2022, 96, JVI0170421.	3.4	15
2	Prohibitin-1 Contributes to Cell-to-Cell Transmission of Herpes Simplex Virus 1 via the MAPK/ERK Signaling Pathway. Journal of Virology, 2021, 95, .	3.4	10
3	The Combination of gQ1 and gQ2 in Human Herpesvirus 6A and 6B Regulates the Viral Tetramer Function for Their Receptor Recognition. Journal of Virology, 2021, 95, .	3.4	3
4	Host and Viral Factors Involved in Nuclear Egress of Herpes Simplex Virus 1. Viruses, 2021, 13, 754.	3.3	22
5	Human Herpesvirus 6A Tegument Protein U14 Induces NF-κB Signaling by Interacting with p65. Journal of Virology, 2021, 95, e0126921.	3.4	6
6	Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics. Nature Communications, 2020, 11, 4894.	12.8	18
7	Role of Phosphatidylethanolamine Biosynthesis in Herpes Simplex Virus 1-Infected Cells in Progeny Virus Morphogenesis in the Cytoplasm and in Viral Pathogenicity <i>In Vivo</i> . Journal of Virology, 2020, 94, .	3.4	13
8	ESCRT-III controls nuclear envelope deformation induced by progerin. Scientific Reports, 2020, 10, 18877.	3.3	12
9	Identification of the Capsid Binding Site in the Herpes Simplex Virus 1 Nuclear Egress Complex and Its Role in Viral Primary Envelopment and Replication. Journal of Virology, 2019, 93, .	3.4	32
10	Roles of the Interhexamer Contact Site for Hexagonal Lattice Formation of the Herpes Simplex Virus 1 Nuclear Egress Complex in Viral Primary Envelopment and Replication. Journal of Virology, 2019, 93, .	3.4	27
11	Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication. Cell Host and Microbe, 2018, 23, 254-265.e7.	11.0	109
12	Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nature Immunology, 2018, 19, 1071-1082.	14.5	52
13	Roles of the Phosphorylation of Herpes Simplex Virus 1 UL51 at a Specific Site in Viral Replication and Pathogenicity. Journal of Virology, 2018, 92, .	3.4	25
14	ESCRT-III mediates budding across the inner nuclear membrane and regulates its integrity. Nature Communications, 2018, 9, 3379.	12.8	86
15	The Role of HSV Glycoproteins in Mediating Cell Entry. Advances in Experimental Medicine and Biology, 2018, 1045, 3-21.	1.6	23
16	Regulation of Herpes Simplex Virus 2 Protein Kinase UL13 by Phosphorylation and Its Role in Viral Pathogenesis. Journal of Virology, 2018, 92, .	3.4	11
17	Herpes Simplex Virus 1 UL34 Protein Regulates the Global Architecture of the Endoplasmic Reticulum in Infected Cells. Journal of Virology, 2017, 91, .	3.4	19
18	Herpes Simplex Virus 1 Small Capsomere-Interacting Protein VP26 Regulates Nucleocapsid Maturation. Journal of Virology, 2017, 91, .	3.4	11

#	Article	IF	CITATIONS
19	Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. Journal of Virology, 2016, 90, 5622-5635.	3.4	9
20	p53 Is a Host Cell Regulator during Herpes Simplex Encephalitis. Journal of Virology, 2016, 90, 6738-6745.	3.4	17
21	Multiple Roles of the Cytoplasmic Domain of Herpes Simplex Virus 1 Envelope Glycoprotein D in Infected Cells. Journal of Virology, 2016, 90, 10170-10181.	3.4	15
22	The Interaction between Herpes Simplex Virus 1 Tegument Proteins UL51 and UL14 and Its Role in Virion Morphogenesis. Journal of Virology, 2016, 90, 8754-8767.	3.4	24
23	Cellular Transcriptional Coactivator RanBP10 and Herpes Simplex Virus 1 ICPO Interact and Synergistically Promote Viral Gene Expression and Replication. Journal of Virology, 2016, 90, 3173-3186.	3.4	17
24	Characterization of a Herpes Simplex Virus 1 (HSV-1) Chimera in Which the Us3 Protein Kinase Gene Is Replaced with the HSV-2 Us3 Gene. Journal of Virology, 2016, 90, 457-473.	3.4	13
25	Herpes Simplex Virus 1 Recruits CD98 Heavy Chain and \hat{l}^21 Integrin to the Nuclear Membrane for Viral De-Envelopment. Journal of Virology, 2015, 89, 7799-7812.	3.4	36
26	Role of Host Cell p32 in Herpes Simplex Virus 1 De-Envelopment during Viral Nuclear Egress. Journal of Virology, 2015, 89, 8982-8998.	3.4	55
27	Phosphorylation of Herpes Simplex Virus 1 dUTPase Regulates Viral Virulence and Genome Integrity by Compensating for Low Cellular dUTPase Activity in the Central Nervous System. Journal of Virology, 2015, 89, 241-248.	3.4	12
28	Function of the Herpes Simplex Virus 1 Small Capsid Protein VP26 Is Regulated by Phosphorylation at a Specific Site. Journal of Virology, 2015, 89, 6141-6147.	3.4	9
29	Nonmuscle Myosin Heavy Chain IIB Mediates Herpes Simplex Virus 1 Entry. Journal of Virology, 2015, 89, 1879-1888.	3.4	31
30	Angiomotin functions in HIV-1 assembly and budding. ELife, 2015, 4, .	6.0	42
31	Phosphorylation of Herpes Simplex Virus 1 dUTPase Upregulated Viral dUTPase Activity To Compensate for Low Cellular dUTPase Activity for Efficient Viral Replication. Journal of Virology, 2014, 88, 7776-7785.	3.4	22
32	The UL12 Protein of Herpes Simplex Virus 1 Is Regulated by Tyrosine Phosphorylation. Journal of Virology, 2014, 88, 10624-10634.	3.4	11
33	Role of Herpes Simplex Virus 1 Immediate Early Protein ICP22 in Viral Nuclear Egress. Journal of Virology, 2014, 88, 7445-7454.	3.4	58
34	Herpes Simplex Virus 1 UL47 Interacts with Viral Nuclear Egress Factors UL31, UL34, and Us3 and Regulates Viral Nuclear Egress. Journal of Virology, 2014, 88, 4657-4667.	3.4	64
35	Herpes Simplex Virus 1 Protein Kinase Us3 and Major Tegument Protein UL47 Reciprocally Regulate Their Subcellular Localization in Infected Cells. Journal of Virology, 2011, 85, 9599-9613.	3.4	42
36	Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature, 2010, 467, 859-862.	27.8	194

#	Article	IF	CITATIONS
37	A Single-Amino-Acid Substitution in Herpes Simplex Virus 1 Envelope Glycoprotein B at a Site Required for Binding to the Paired Immunoglobulin-Like Type 2 Receptor α (PILRĨ±) Abrogates PILRĨ±-Dependent Viral Entry and Reduces Pathogenesis. Journal of Virology, 2010, 84, 10773-10783.	3.4	33
38	Effects of Phosphorylation of Herpes Simplex Virus 1 Envelope Glycoprotein B by Us3 Kinase In Vivo and In Vitro. Journal of Virology, 2010, 84, 153-162.	3.4	32
39	Entry of Herpes Simplex Virus 1 and Other Alphaherpesviruses via the Paired Immunoglobulin-Like Type 2 Receptor α. Journal of Virology, 2009, 83, 4520-4527.	3.4	78
40	Herpes Simplex Virus 1 Protein Kinase Us3 Phosphorylates Viral Envelope Glycoprotein B and Regulates Its Expression on the Cell Surface. Journal of Virology, 2009, 83, 250-261.	3 . 4	73
41	Analysis of herpesvirus host specificity determinants using herpesvirus genomes as bacterial artificial chromosomes. Microbiology and Immunology, 2009, 53, 433-441.	1.4	4
42	$PILR\hat{l}_{\pm}$ Is a Herpes Simplex Virus-1 Entry Coreceptor That Associates with Glycoprotein B. Cell, 2008, 132, 935-944.	28.9	264
43	Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome. Microbes and Infection, 2006, 8, 1054-1063.	1.9	11