Tarek Elfouly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203878/publications.pdf

Version: 2024-02-01

759233 713466 60 909 12 21 citations h-index g-index papers 60 60 60 1169 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evolution of Internet of Things From Blockchain to IOTA: A Survey. IEEE Access, 2022, 10, 844-866.	4.2	27
2	Energy-Efficient Proactive Scheduling Policies for Finite-Buffer Regular Service Guarantees., 2022,,.		0
3	Towards Information Theoretic Interpretation of Practical Ciphers. , 2021, , .		O
4	Optimal Consensus Time Synchronizations for Wireless Sensor Networks. , 2020, , .		1
5	Distributed Framework via Block-chain Smart Contracts for Smart Grid Systems against Cyber-Attacks. , 2020, , .		1
6	Order Statistics-Based Design of UWB Receivers. IEEE Wireless Communications Letters, 2020, 9, 1427-1431.	5.0	2
7	Minimising number of sensors in wireless sensor networks for structure health monitoring systems. IET Wireless Sensor Systems, 2019, 9, 94-101.	1.7	2
8	A Survey on Mobile Crowd-Sensing and Its Applications in the IoT Era. IEEE Access, 2019, 7, 3855-3881.	4.2	53
9	Secure Spatial Multiple Access Using Directional Modulation. IEEE Transactions on Wireless Communications, 2018, 17, 563-573.	9.2	29
10	Deep learning and low rank dictionary model for mHealth data classification. , $2018, , .$		5
10	Deep learning and low rank dictionary model for mHealth data classification., 2018,,. A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739.	4.2	5
	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth	4.2 9.1	
11	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739. Distributed in-network processing and resource optimization over mobile-health systems. Journal of		31
11 12	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739. Distributed in-network processing and resource optimization over mobile-health systems. Journal of Network and Computer Applications, 2017, 82, 65-76. Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring With and Without	9.1	31 15
11 12 13	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739. Distributed in-network processing and resource optimization over mobile-health systems. Journal of Network and Computer Applications, 2017, 82, 65-76. Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring With and Without Energy Harvesting. IEEE Access, 2017, 5, 2383-2395. Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring. Journal of Network and Computer	9.1	31 15 48
11 12 13	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739. Distributed in-network processing and resource optimization over mobile-health systems. Journal of Network and Computer Applications, 2017, 82, 65-76. Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring With and Without Energy Harvesting. IEEE Access, 2017, 5, 2383-2395. Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring. Journal of Network and Computer Applications, 2017, 83, 181-189. A Simple Cross Correlation Switched Beam System (XSBS) for Angle of Arrival Estimation. IEEE Access,	9.1 4.2 9.1	31 15 48 14
11 12 13 14	A Deep Learning Approach for Vital Signs Compression and Energy Efficient Delivery in mhealth Systems. IEEE Access, 2018, 6, 33727-33739. Distributed in-network processing and resource optimization over mobile-health systems. Journal of Network and Computer Applications, 2017, 82, 65-76. Maximizing Lifetime in Wireless Sensor Network for Structural Health Monitoring With and Without Energy Harvesting. IEEE Access, 2017, 5, 2383-2395. Impact of time synchronization error on the mode-shape identification and damage detection/localization in WSNs for structural health monitoring. Journal of Network and Computer Applications, 2017, 83, 181-189. A Simple Cross Correlation Switched Beam System (XSBS) for Angle of Arrival Estimation. IEEE Access, 2017, 5, 3340-3352.	9.1 4.2 9.1	31 15 48 14

#	Article	lF	CITATIONS
19	Deep learning approach for EEG compression in mHealth system. , 2017, , .		4
20	Estimating the number of sources in white Gaussian noise: simple eigenvalues based approaches. IET Signal Processing, 2017, 11, 663-673.	1.5	9
21	Walsh transform with moving average filtering for data compression in wireless sensor networks. , 2017, , .		9
22	A Simple Angle of Arrival Estimation System. , 2017, , .		6
23	Exploiting spectrum sensing data for key management. Computer Communications, 2017, 97, 31-39.	5.1	0
24	Higher order statistical frequency domain decomposition for operational modal analysis. Mechanical Systems and Signal Processing, 2017, 84, 100-112.	8.0	6
25	The Impact of Stealthy Attacks on Smart Grid Performance: Tradeoffs and Implications. IEEE Transactions on Control of Network Systems, 2017, 4, 886-898.	3.7	10
26	Robust secret key extraction from channel secondary random process. Wireless Communications and Mobile Computing, 2016, 16, 1389-1400.	1.2	8
27	Unleashing the secure potential of the wireless physical layer: Secret key generation methods. Physical Communication, 2016, 19, 1-10.	2.1	25
28	Joint Optimal Placement, Routing, and Flow Assignment in Wireless Sensor Networks for Structural Health Monitoring. IEEE Sensors Journal, 2016, 16, 5095-5106.	4.7	36
29	On the performance of spectrum sensing based on GLR for full-duplex cognitive radio networks. , 2016, , .		7
30	Impact of time synchronization error on the mode-shape calculation in wireless sensor networks for structural health monitoring. , 2016, , .		3
31	Secure multiple-users transmission using multi-path directional modulation., 2016,,.		10
32	Performance evaluation of experimental damage detection in structure health monitoring using acceleration. , 2016, , .		7
33	Performance of eigenvalue based spectrum sensing in full-duplex cognitive radio networks. , 2016, , .		3
34	FPGA implementation of DWT EEG data compression for wireless body sensor networks. , 2016, , .		9
35	Vibration Energy Harvesting in Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM). , 2016, , .		1
36	Secret Key Generation Based on AoA Estimation for Low SNR Conditions., 2015,,.		19

#	Article	IF	Citations
37	Energy-cost-distortion optimization for delay-sensitive M-health applications. , 2015, , .		2
38	Channel secondary random process for robust secret key generation. , 2015, , .		1
39	Secrecy for MIMO wiretap and MIMO broadcast channels with fading eavesdroppers: CSI does not increase the secure DoF., 2015,,.		5
40	Multi-objective sensor placement using the effective independence model (SPEM) for wireless sensor networks in structural health monitoring. , $2015, \ldots$		4
41	Distributed algorithms in wireless sensor networks: An approach for applying binary consensus in a real testbed. Computer Networks, 2015, 79, 30-38.	5.1	14
42	Routing and flow rate assignment using multi-objective optimization in wireless sensor networks. , 2015, , .		3
43	Comparative simulation for physical layer key generation methods. , 2015, , .		5
44	Estimating the number of sources: An efficient maximization approach. , $2015, , .$		12
45	Effect of Vortex Order on Helical-Phased Donut Mode Launch in Multimode Fiber. Advanced Science Letters, 2015, 21, 3042-3045.	0.2	10
46	Optical Mode Division Multiplexing for Secure Ro-FSO WLANs. Advanced Science Letters, 2015, 21, 3046-3049.	0.2	29
47	A new WDM Application Response Time in WLAN Network and Fixed WiMAX using Distributed. , 2014, , .		8
48	Non-data-aided SNR estimation for QPSK modulation in AWGN channel. , 2014, , .		18
49	TOSSIM and distributed binary consensus algorithm in wireless sensor networks. Journal of Network and Computer Applications, 2014, 41, 451-458.	9.1	6
50	Secret key generation based on channel and distance measurements. , 2014, , .		5
51	Binary consensus in sensor motes. , 2013, , .		5
52	On the distributed binary consensus algorithm in wireless sensor networks. , 2013, , .		2
53	Distributed binary consensus algorithm in wireless sensor networks with faulty nodes. , 2013, , .		5
54	Distributed binary consensus algorithm and wireless sensor network. , 2013, , .		1

TAREK ELFOULY

#	Article	IF	CITATIONS
55	QUMESH: Wireless mesh network deployment and configuration in harsh environment. , 2012, , .		1
56	Video acquisition between USB 2.0 CMOS camera and embedded FPGA system. , 2011, , .		3
57	Digital government service machine DGSM. , 2008, , .		1
58	Modeling of the exhaust box assembly workshop using neural networks. , 2008, , .		0
59	Using IPSec to Secure Multi-Level Data Classification in MLS Networks. , 2006, , .		O
60	MESP: A Modified IPSec for Secure Multicast Communication. , 2006, , .		2