Alessia Moretti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3203815/publications.pdf

Version: 2024-02-01

71102 102487 4,809 115 41 66 citations h-index g-index papers 119 119 119 2954 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GASP XXXVIII: The LOFAR-MeerKAT-VLA View on the Nonthermal Side of a Jellyfish Galaxy. Astrophysical Journal, 2022, 924, 64.	4.5	19
2	Observing Ram Pressure at Work in Intermediate Redshift Clusters with MUSE: The Case of Abell 2744 and Abell 370. Astrophysical Journal, 2022, 925, 4.	4.5	18
3	The Relevance of Ram Pressure Stripping for the Evolution of Blue Cluster Galaxies as Seen at Optical Wavelengths. Astrophysical Journal, 2022, 927, 91.	4.5	16
4	GASP XXXVII: The Most Extreme Jellyfish Galaxies Compared with Other Disk Galaxies in Clusters, an H i Study. Astrophysical Journal, 2022, 927, 39.	4.5	6
5	Exploring the AGN–Ram Pressure Stripping Connection in Local Clusters. Astrophysical Journal, 2022, 927, 130.	4.5	34
6	Post-starburst Galaxies in the Centers of Intermediate-redshift Clusters. Astrophysical Journal, 2022, 930, 43.	4.5	22
7	Highly ordered magnetic fields in the tail of the jellyfish galaxy JO206. Nature Astronomy, 2021, 5, 159-168.	10.1	38
8	GASP. XXXII. Measuring the Diffuse Ionized Gas Fraction in Ram-pressure-stripped Galaxies. Astrophysical Journal, 2021, 907, 22.	4.5	13
9	GASP XXXIV: Unfolding the Thermal Side of Ram Pressure Stripping in the Jellyfish Galaxy JO201. Astrophysical Journal, 2021, 911, 144.	4.5	24
10	GASP. XXXIII. The Ability of Spatially Resolved Data to Distinguish among the Different Physical Mechanisms Affecting Galaxies in Low-density Environments. Astrophysical Journal, 2021, 914, 27.	4.5	21
11	Two striking head–tail galaxies in the galaxy cluster IIZW108: insights into transition to turbulence, magnetic fields, and particle re-acceleration. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5326-5344.	4.4	14
12	Evidence for Mixing between ICM and Stripped ISM by the Analysis of the Gas Metallicity in the Tails of Jellyfish Galaxies. Astrophysical Journal Letters, 2021, 922, L6.	8.3	11
13	GASP XXXV: Characteristics of the Diffuse Ionised Gas in Gas-stripped Galaxies. Astrophysical Journal, 2021, 922, 131.	4.5	8
14	Role of Magnetic Fields in Ram Pressure Stripped Galaxies. Galaxies, 2021, 9, 116.	3.0	6
15	GASP and MaNGA Surveys Shed Light on the Enigma of the Gas Metallicity Gradients in Disk Galaxies. Astrophysical Journal, 2021, 923, 28.	4.5	13
16	GASP XXV: neutral hydrogen gas in the striking jellyfish galaxy JO204. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5029-5043.	4.4	28
17	The dynamical state of Abell 2399: a bullet-like cluster. Monthly Notices of the Royal Astronomical Society, 2020, 498, 835-849.	4.4	9
18	Anisotropic infall in the outskirts of OmegaWINGS galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4950-4959.	4.4	14

#	Article	IF	CITATIONS
19	Passive spirals and shock influenced star formation in the merging cluster A3376. Monthly Notices of the Royal Astronomical Society, 2020, 496, 442-455.	4.4	5
20	Multi-wavelength structure analysis of local cluster galaxies. Astronomy and Astrophysics, 2020, 633, A104.	5.1	8
21	GASP. Astronomy and Astrophysics, 2020, 640, A22.	5.1	35
22	GASP XXIX – unwinding the arms of spiral galaxies via ram-pressure stripping. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1285-1312.	4.4	29
23	GASP. XXII. The Molecular Gas Content of the JW100 Jellyfish Galaxy at zÂâ^1⁄4Â0.05: Does Ram Pressure Promote Molecular Gas Formation?. Astrophysical Journal, 2020, 889, 9.	4.5	58
24	GASP XXIV. The History of Abruptly Quenched Galaxies in Clusters. Astrophysical Journal, 2020, 892, 146.	4.5	35
25	GASP XXVII: Gas-phase Metallicity Scaling Relations in Disk Galaxies with and without Ram Pressure Stripping. Astrophysical Journal, 2020, 895, 106.	4.5	19
26	GASP. XXI. Star Formation Rates in the Tails of Galaxies Undergoing Ram Pressure Stripping. Astrophysical Journal, 2020, 899, 13.	4.5	49
27	GASP XXX. The Spatially Resolved SFR–Mass Relation in Stripping Galaxies in the Local Universe. Astrophysical Journal, 2020, 899, 98.	4.5	35
28	The High Molecular Gas Content, and the Efficient Conversion of Neutral into Molecular Gas, in Jellyfish Galaxies. Astrophysical Journal Letters, 2020, 897, L30.	8.3	47
29	The second <i>u</i> -band extension of the WINGS cluster survey. Astronomy and Astrophysics, 2020, 637, A54.	5.1	4
30	GASP – XX. From the loose spatially resolved to the tight global SFR–mass relation in local spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1597-1617.	4.4	27
31	GASP – XVI. Does cosmic web enhancement turn on star formation in galaxies?. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2278-2295.	4.4	34
32	GASP XVIII: star formation quenching due to AGN feedback in the central region of a jellyfish galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 487, 3102-3111.	4.4	37
33	GASP – XVII. H i imaging of the jellyfish galaxy JO206: gas stripping and enhanced star formation. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4580-4591.	4.4	50
34	GASP XIII. Star formation in gas outside galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4466-4502.	4.4	83
35	GASP – XIX. AGN and their outflows at the centre of jellyfish galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 486-503.	4.4	35
36	GASP. XV. A MUSE view of extreme ram-pressure stripping along the line of sight: physical properties of the jellyfish galaxy JO201. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1157-1170.	4.4	39

#	Article	IF	CITATIONS
37	Structural and dynamical modeling of WINGS clusters. Astronomy and Astrophysics, 2019, 631, A131.	5.1	27
38	The strong correlation between post-starburst fraction and environment. Monthly Notices of the Royal Astronomical Society, 2019, 482, 881-894.	4.4	35
39	GASP XXIII: A Jellyfish Galaxy as an Astrophysical Laboratory of the Baryonic Cycle. Astrophysical Journal, 2019, 887, 155.	4.5	52
40	The role of environment on quenching, star formation and AGN activity. Proceedings of the International Astronomical Union, 2019, 15 , $108-116$.	0.0	0
41	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A15.	5.1	8
42	Characterization of Omega-WINGS galaxy clusters. Astronomy and Astrophysics, 2018, 609, A133.	5.1	12
43	GASP – X. APEX observations of molecular gas in the discs and in the tails of ram-pressure stripped galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2508-2520.	4.4	57
44	GASP $\hat{a}\in$ XII. The variety of physical processes occurring in a single galaxy group in formation. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3152-3169.	4.4	35
45	Morphology rather than environment drives the SFR–mass relation in the local universe. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3456-3469.	4.4	21
46	Enhanced Star Formation in Both Disks and Ram-pressure-stripped Tails of GASP Jellyfish Galaxies. Astrophysical Journal Letters, 2018, 866, L25.	8.3	115
47	UVIT view of ram-pressure stripping in action: star formation in the stripped gas of the GASP jellyfish galaxy JO201 in Abell 85. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4126-4135.	4.4	42
48	GASP. IX. Jellyfish galaxies in phase-space: an orbital study of intense ram-pressure stripping in clusters. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4753-4764.	4.4	123
49	GASP. VII. Signs of Gas Inflow onto a Lopsided Galaxy. Astrophysical Journal, 2018, 852, 94.	4.5	19
50	Emission line galaxies and active galactic nuclei in WINGS clusters. Astronomy and Astrophysics, 2017, 599, A83.	5.1	19
51	GASP. II. A MUSE View of Extreme Ram-Pressure Stripping along the Line of Sight: Kinematics of the Jellyfish Galaxy JO201. Astrophysical Journal, 2017, 844, 49.	4.5	76
52	GASP. I. Gas Stripping Phenomena in Galaxies with MUSE. Astrophysical Journal, 2017, 844, 48.	4.5	248
53	Ram-pressure feeding of supermassive black holes. Nature, 2017, 548, 304-309.	27.8	106
54	OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe. Astrophysical Journal, 2017, 838, 148.	4.5	43

#	Article	IF	Citations
55	GASP. VIII. Capturing the Birth of a Tidal Dwarf Galaxy in a Merging System at zÂâ^¼Â0.05. Astrophysical Journal, 2017, 850, 163.	4.5	10
56	GASP. IV. A Muse View of Extreme Ram-pressure-stripping in the Plane of the Sky: The Case of Jellyfish Galaxy JO204. Astrophysical Journal, 2017, 846, 27.	4.5	64
57	GASP. III. JO36: A Case of Multiple Environmental Effects at Play?. Astrophysical Journal, 2017, 848, 132.	4.5	66
58	Structural and dynamical modeling of WINGS clusters. Astronomy and Astrophysics, 2017, 606, A108.	5.1	23
59	The concentration–mass relation of clusters of galaxies from the OmegaWINGS survey. Astronomy and Astrophysics, 2017, 607, A81.	5.1	51
60	OmegaWINGS: spectroscopy in the outskirts of local clusters of galaxies. Astronomy and Astrophysics, 2017, 599, A81.	5.1	64
61	SLOW QUENCHING OF STAR FORMATION IN OMEGAWINGS CLUSTERS: GALAXIES IN TRANSITION IN THE LOCAL UNIVERSE. Astrophysical Journal Letters, 2016, 816, L25.	8.3	75
62	MAD ADAPTIVE OPTICS IMAGING OF HIGH-LUMINOSITY QUASARS: A PILOT PROJECT. Astronomical Journal, 2016, 152, 38.	4.7	2
63	JELLYFISH GALAXY CANDIDATES AT LOW REDSHIFT. Astronomical Journal, 2016, 151, 78.	4.7	136
64	The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 177-182.	0.3	1
65	The Properties of Faint Galaxies in Nearby Clusters of the WINGS Sample. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 183-188.	0.3	2
66	Galaxy luminosity functions in WINGS clusters. Astronomy and Astrophysics, 2015, 581, A11.	5.1	19
67	Morphological fractions of galaxies in WINGS clusters: revisiting the morphology–density paradigm. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3927-3944.	4.4	44
68	OmegaWINGS: OmegaCAM-VST observations of WINGS galaxy clusters. Astronomy and Astrophysics, 2015, 581, A41.	5.1	76
69	FROM BLUE STAR-FORMING TO RED PASSIVE: GALAXIES IN TRANSITION IN DIFFERENT ENVIRONMENTS. Astrophysical Journal, 2015, 798, 52.	4.5	52
70	The star formation history of galaxies: the role of galaxy mass, morphology and environment. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2749-2763.	4.4	53
71	WINGS-SPE. Astronomy and Astrophysics, 2014, 566, A32.	5.1	32
72	WINGS Data Release: a database of galaxies in nearby clusters. Astronomy and Astrophysics, 2014, 564, A138.	5.1	61

#	Article	IF	CITATIONS
73	Surface photometry of WINGS galaxies with GASPHOT. Astronomy and Astrophysics, 2014, 572, A87.	5.1	21
74	Kinematics of superdense galaxies in clusters. Proceedings of the International Astronomical Union, 2014, 10, 219-220.	0.0	0
75	<i>U</i> -band photometry of 17 WINGS clusters. Astronomy and Astrophysics, 2014, 561, A111.	5.1	19
76	The hybrid solution for the Fundamental Plane. Monthly Notices of the Royal Astronomical Society, 2013, 435, 45-63.	4.4	17
77	THE EVOLUTION OF THE NUMBER DENSITY OF COMPACT GALAXIES. Astrophysical Journal, 2013, 777, 125.	4.5	77
78	ON THE RADIO AND NEAR-INFRARED JET OF PKS 2155–304 AND ITS CLOSE ENVIRONMENT. Astronomical Journal, 2013, 145, 73.	4.7	6
79	The fundamental plane of clusters of galaxies. Astronomische Nachrichten, 2013, 334, 373-376.	1.2	6
80	The galaxy stellar mass function and its evolution with time show no dependence on global environment. Astronomy and Astrophysics, 2013, 550, A58.	5.1	58
81	SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT. Astrophysical Journal, 2013, 762, 77.	4.5	150
82	The ACS survey of Galactic globular clusters. Astronomy and Astrophysics, 2012, 540, A16.	5.1	352
83	The evolution of galaxy sizes. Proceedings of the International Astronomical Union, 2012, 8, 151-154.	0.0	3
84	Morphology of galaxies in the WINGS clusters. Monthly Notices of the Royal Astronomical Society, 2012, 420, 926-948.	4.4	66
85	The importance of the local density in shaping the galaxy stellar mass functionsa˜ Monthly Notices of the Royal Astronomical Society, 2012, 420, 1481-1494.	4.4	47
86	The red-sequence of 72 WINGS local galaxy clusters. Astronomy and Astrophysics, 2011, 536, A34.	5.1	43
87	WINGS-SPE II: A catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies. Astronomy and Astrophysics, 2011, 526, A45.	5.1	63
88	The jet of the BL Lacertae object PKS 2201+044: MAD near-IR adaptive optics observations and comparison with optical, radio and X-ray data. Astronomy and Astrophysics, 2011, 528, A34.	5.1	6
89	ON THE CONNECTION BETWEEN SHAPE AND STELLAR POPULATION IN EARLY-TYPE GALAXIES. Astrophysical Journal Letters, 2011, 727, L6.	8.3	12
90	Galaxy stellar mass functions of different morphological types in clusters, and their evolution between z= 0.8 and 0. Monthly Notices of the Royal Astronomical Society, 2011, 412, 246-268.	4.4	96

#	Article	IF	Citations
91	The evolution of early-type galaxies in clusters from $z\hat{a}^{1}/40.8$ to $z\hat{a}\in f\hat{a}^{1}/4\hat{a}\in f0$: the ellipticity distribution and the morphological mix. Monthly Notices of the Royal Astronomical Society, 2011, 413, 921-941.	4.4	25
92	Studying the diverse nature of faint galaxies in nearby clusters of the WINGS sample. Astronomische Nachrichten, 2011, 332, 299-300.	1.2	1
93	Equivalent width Measurements in Optical Spectra of Galaxies in Local Clusters: Hints On the Star Formation History in Clusters. Open Astronomy, 2011, 20, 435-441.	0.6	1
94	SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS. Astrophysical Journal, 2010, 712, 226-237.	4.5	149
95	SUPERDENSE MASSIVE GALAXIES IN THE ESO DISTANT CLUSTER SURVEY (EDisCS). Astrophysical Journal Letters, 2010, 721, L19-L23.	8.3	71
96	The shapes of BCGs and normal ellipticals in nearby clusters. Monthly Notices of the Royal Astronomical Society, 2010 , , .	4.4	14
97	An update of the on-sky performance of the layer-oriented wavefront sensor for MAD. Proceedings of SPIE, 2010, , .	0.8	5
98	The jet of the BL Lacertae object PKS 0521-365 in the near-IR: MAD adaptive optics observations. Astronomy and Astrophysics, 2009, 501, 907-914.	5.1	19
99	Ground-based CCD astrometry with wide field imagers. Astronomy and Astrophysics, 2009, 493, 959-978.	5.1	89
100	MCAO near-IR photometry of the globular cluster NGCÂ6388: MAD observations in crowded fields. Astronomy and Astrophysics, 2009, 493, 539-546.	5.1	46
101	DEALING WITH TURBULENCE: MCAO EXPERIENCE AND BEYOND., 2009,,.		O
102	Layer oriented: science with MAD and beyond. Proceedings of SPIE, 2008, , .	0.8	2
103	Environmental effects on the globular cluster blue straggler population: a statistical approach. Astronomy and Astrophysics, 2008, 483, 183-197.	5.1	23
104	Resolving stellar populations outside the Local Group: MAD observations of UKS 2323-326. Astronomy and Astrophysics, 2008, 483, L5-L8.	5.1	14
105	Near infrared <i>VLT</i> / <i>MAD</i> observations of the isolated neutron stars RX J0420.0-5022 and RX J1856.5-3754. Astronomy and Astrophysics, 2008, 488, 267-270.	5.1	7
106	A Search for Spectroscopic Binaries in the Globular Cluster M4. Proceedings of the International Astronomical Union, 2007, 3, 277-278.	0.0	8
107	Environmental Effects on the Globular Cluster Blue Straggler Population: a Statistical Approach. Proceedings of the International Astronomical Union, 2007, 3, 369-370.	0.0	O
108	Ages and metallicities of Globular Clusters in M33. Proceedings of the International Astronomical Union, 2006, 2, .	0.0	0

#	Article	IF	CITATIONS
109	Age distribution of young clusters and field stars in the Small Magellanic Cloud. Astronomy and Astrophysics, 2006, 452, 179-193.	5.1	61
110	Can a "Standard―Initial Mass Function Explain the Metal Enrichment in Clusters of Galaxies?. Astrophysical Journal, 2004, 604, 579-595.	4. 5	58
111	The Resolved Fraction of the Cosmic Xâ€Ray Background. Astrophysical Journal, 2003, 588, 696-703.	4.5	301
112	Chemical evolution of the intra-cluster medium. Astronomy and Astrophysics, 2003, 408, 431-453.	5.1	24
113	VLT Spectroscopy of Globular Clusters in the Sombrero Galaxy. , 0, , 161-166.		2
114	GASP V: Ram-pressure stripping of a ring Hoag's-like galaxy in a massive cluster. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	22
115	Wide Field Photometry of the M104 Globular Cluster System. , 0, , 167-170.		2