Harry Boer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3202225/publications.pdf Version: 2024-02-01

		218677	254184
43	1,913	26	43
papers	citations	h-index	g-index
42	12	42	2510
43	43	43	2519
all docs	docs citations	times ranked	citing authors

HADDY ROED

#	Article	IF	CITATIONS
1	A Glucose/Oxygen Enzymatic Fuel Cell based on Gold Nanoparticles modified Graphene Screen-Printed Electrode. Proof-of-Concept in Human Saliva. Sensors and Actuators B: Chemical, 2018, 256, 921-930.	7.8	72
2	A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Applied and Environmental Microbiology, 2017, 83, .	3.1	30
3	A dual approach for improving homogeneity of a human-type N-glycan structure in Saccharomyces cerevisiae. Clycoconjugate Journal, 2016, 33, 189-199.	2.7	24
4	Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities. Applied Microbiology and Biotechnology, 2016, 100, 673-685.	3.6	4
5	A spectroscopic characterization of a phenolic natural mediator in the laccase biocatalytic reaction. Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 203-208.	1.8	14
6	A Hisâ€Tagged <i>Melanocarpus albomyces</i> Laccase and its Electrochemistry upon Immobilisation on NTAâ€Modified Electrodes and in Conducting Polymer Films. ChemPhysChem, 2013, 14, 2225-2231.	2.1	13
7	Characterization of a novel Agrobacterium tumefaciens Galactarolactone Cycloisomerase Enzyme for Direct Conversion of d-Galactarolactone to 3-Deoxy-2-keto-l-threo-hexarate. Journal of Biological Chemistry, 2012, 287, 17662-17671.	3.4	28
8	Transglutaminase Catalyzed Cross-Linking of Sodium Caseinate Improves Oxidative Stability of Flaxseed Oil Emulsion. Journal of Agricultural and Food Chemistry, 2012, 60, 6223-6229.	5.2	41
9	Enzymatic cross-linking of β-lactoglobulin in solution and at air–water interface: Structural constraints. Food Hydrocolloids, 2012, 28, 1-9.	10.7	37
10	Engineering chitinases for the synthesis of chitin oligosaccharides: Catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 89-96.	1.8	46
11	Improving Laccase Catalyzed Cross-Linking of Whey Protein Isolate and Their Application as Emulsifiers. Journal of Agricultural and Food Chemistry, 2011, 59, 1406-1414.	5.2	61
12	Charge Modifications to Improve the Emulsifying Properties of Whey Protein Isolate. Journal of Agricultural and Food Chemistry, 2011, 59, 13246-13253.	5.2	21
13	Direct Electron Transfer of <i>Trametes hirsuta</i> Laccase in a Dual-Layer Architecture of Poly(3,4-ethylenedioxythiophene) Films. Journal of Physical Chemistry C, 2011, 115, 5919-5929.	3.1	20
14	Crystal structure of an ascomycete fungal laccase from <i>Thielavia arenaria</i> – common structural features of ascoâ€laccases. FEBS Journal, 2011, 278, 2283-2295.	4.7	71
15	Film formation and surface properties of enzymatically crosslinked casein films. Journal of Applied Polymer Science, 2011, 119, 2205-2213.	2.6	28
16	Crystal Structure of Uronate Dehydrogenase from Agrobacterium tumefaciens. Journal of Biological Chemistry, 2011, 286, 27294-27300.	3.4	25
17	Identification in Agrobacterium tumefaciens of the d-galacturonic acid dehydrogenase gene. Applied Microbiology and Biotechnology, 2010, 86, 901-909.	3.6	42
18	Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 899-908.	2.3	101

HARRY BOER

#	Article	IF	CITATIONS
19	Electrochemical evaluation of electron transfer kinetics of high and low redox potential laccases on gold electrode surface. Electrochimica Acta, 2010, 56, 817-827.	5.2	41
20	Printed Supercapacitor as Hybrid Device with an Enzymatic Power Source. Advances in Science and Technology, 2010, 72, 331-336.	0.2	13
21	Metabolic Engineering of Fungal Strains for Conversion of <scp>d</scp> -Galacturonate to <i>meso</i> -Galactarate. Applied and Environmental Microbiology, 2010, 76, 169-175.	3.1	63
22	Crosslinking Food Proteins for Improved Functionality. Annual Review of Food Science and Technology, 2010, 1, 113-138.	9.9	180
23	Characterization of the wheat germ agglutinin binding to self-assembled monolayers of neoglycoconjugates by AFM and SPR. Glycobiology, 2009, 19, 633-643.	2.5	24
24	Performance of a Printable Enzymatic Fuel Cell: Study on Mediated ThL Laccase Cathode. ECS Transactions, 2009, 25, 1-10.	0.5	5
25	Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology, 2009, 19, 1116-1126.	2.5	33
26	Improving the thermostability and activity of Melanocarpus albomyces cellobiohydrolase Cel7B. Applied Microbiology and Biotechnology, 2009, 83, 261-272.	3.6	61
27	The effect of lignin model compound structure on the rate of oxidation catalyzed by two different fungal laccases. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 204-210.	1.8	40
28	Sodium Caseinates with an Altered Isoelectric Point As Emulsifiers in Oil/Water Systems. Journal of Agricultural and Food Chemistry, 2009, 57, 3800-3807.	5.2	33
29	Development of a printable laccase-based biocathode for fuel cell applications. Enzyme and Microbial Technology, 2008, 43, 93-102.	3.2	68
30	Identification in the yeast <i>Pichiaâ€fstipitis</i> of the first <scp>l</scp> â€rhamnoseâ€1â€dehydrogenase gen FEBS Journal, 2008, 275, 2482-2488.	^{2.} 4.7	20
31	Heterologous expression and site-directed mutagenesis studies of two Trichoderma harzianum chitinases, Chit33 and Chit42, in Escherichia coli. Protein Expression and Purification, 2007, 51, 216-226.	1.3	21
32	Expression of the Trichoderma reesei tyrosinase 2 in Pichia pastoris: Isotopic labeling and physicochemical characterization. Protein Expression and Purification, 2007, 55, 147-158.	1.3	20
33	Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme and Microbial Technology, 2007, 41, 234-243.	3.2	41
34	Mutation of fungal endoglucanases into glycosynthases and characterization of their acceptor substrate specificity. Journal of Molecular Catalysis B: Enzymatic, 2007, 44, 106-116.	1.8	5
35	Structure-Function Analysis of PrsA Reveals Roles for the Parvulin-like and Flanking N- and C-terminal Domains in Protein Folding and Secretion in Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 19302-19314.	3.4	91
36	Differential recognition of animal type Â4-galactosylated and Â3-fucosylated chito-oligosaccharides by two family 18 chitinases from Trichoderma harzianum. Glycobiology, 2004, 14, 1303-1313.	2.5	26

HARRY BOER

#	Article	IF	CITATIONS
37	The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A. FEBS Journal, 2003, 270, 841-848.	0.2	60
38	Probing pH-Dependent Functional Elements in Proteins:Â Modification of Carboxylic Acid Pairs inTrichoderma reeseiCellobiohydrolase Cel6Aâ€. Biochemistry, 2003, 42, 10095-10103.	2.5	40
39	Engineering the Exo-loop of Trichoderma reesei Cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. Journal of Molecular Biology, 2003, 333, 817-829.	4.2	152
40	Characterization ofTrichoderma reesei cellobiohydrolase Cel7A secreted fromPichia pastoris using two different promoters. Biotechnology and Bioengineering, 2000, 69, 486-494.	3.3	123
41	The Thermal Stability and Domain Interactions of the Mannitol Permease of Escherichia coli. Journal of Biological Chemistry, 1998, 273, 20785-20794.	3.4	24
42	Relation between the Oligomerization State and the Transport and Phosphorylation Function of theEscherichia coliMannitol Transport Protein:Â Interaction between Mannitol-Specific Enzyme II Monomers Studied by Complementation of Inactive Site-Directed Mutantsâ€. Biochemistry, 1996, 35, 12901-12908.	2.5	32
43	Phosphorylation Site Mutants of the Mannitol Transport Protein Enzyme IImtl of Escherichia coli: Studies on the Interaction between the Mannitol Translocating C-Domain and the Phosphorylation Site on the Energy-Coupling B-Domain. Biochemistry, 1995, 34, 3239-3247.	2.5	19