Marika Charalambous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201909/publications.pdf

Version: 2024-02-01

21 papers

2,248 citations

16 h-index 713466 21 g-index

23 all docs

23 docs citations

times ranked

23

3877 citing authors

#	Article	IF	CITATIONS
1	Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature, 2013, 504, 277-281.	27.8	946
2	Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8292-8297.	7.1	272
3	Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Current Opinion in Endocrinology, Diabetes and Obesity, 2007, 14, 3-12.	2.3	126
4	Mice with a Disruption of the Imprinted Grb10 Gene Exhibit Altered Body Composition, Glucose Homeostasis, and Insulin Signaling during Postnatal Life. Molecular and Cellular Biology, 2007, 27, 5871-5886.	2.3	117
5	Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metabolism, 2018, 27, 588-601.e4.	16.2	110
6	Gene Dosage Effects of the Imprinted Delta-Like Homologue 1 (Dlk1/Pref1) in Development: Implications for the Evolution of Imprinting. PLoS Genetics, 2009, 5, e1000392.	3 . 5	88
7	Maternally-inherited Grb10 reduces placental size and efficiency. Developmental Biology, 2010, 337, 1-8.	2.0	85
8	Fetus-derived DLK1 is required for maternal metabolic adaptations to pregnancy and is associated with fetal growth restriction. Nature Genetics, 2016, 48, 1473-1480.	21.4	79
9	Imprinted Gene Dosage Is Critical for the Transition to Independent Life. Cell Metabolism, 2012, 15, 209-221.	16.2	72
10	Genomic imprinting, growth and maternal–fetal interactions. Journal of Experimental Biology, 2018, 221, .	1.7	65
11	DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16088-16093.	7.1	54
12	Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup. PLoS Biology, 2014, 12, e1001799.	5.6	49
13	Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14512-14517.	7.1	43
14	An enhancer element at the Igf2/H19 locus drives gene expression in both imprinted and non-imprinted tissues. Developmental Biology, 2004, 271, 488-497.	2.0	37
15	Genomic imprinting of the type 3 thyroid hormone deiodinase gene: Regulation and developmental implications. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3946-3955.	2.4	27
16	MRAP deficiency impairs adrenal progenitor cell differentiation and gland zonation. FASEB Journal, 2018, 32, 6186-6196.	0.5	26
17	Constitutive Activation of \hat{l}^2 -Catenin in Conventional Dendritic Cells Increases the Insulin Reserve to Ameliorate the Development of Type 2 Diabetes in Mice. Diabetes, 2019, 68, 1473-1484.	0.6	12
18	Molecular basis of imprinting disorders affecting chromosome 14: lessons from murine models. Reproduction, 2015, 149, R237-R249.	2.6	11

#	Article	IF	CITATIONS
19	A pipeline for making 31P NMR accessible for small- and large-scale lipidomics studies. Analytical and Bioanalytical Chemistry, 2021, 413, 4763-4773.	3.7	10
20	Evidence for a priming effect on maternal resource allocation: implications for interbrood competition. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S100-3.	2.6	9
21	Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes, 2021, 12, 509.	2.4	9