Peter Belenky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3201129/publications.pdf

Version: 2024-02-01

39 4,527 24 36 g-index

43 43 43 43 6684

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Streptozotocin-Induced Hyperglycemia Is Associated with Unique Microbiome Metabolomic Signatures in Response to Ciprofloxacin Treatment. Antibiotics, 2022, 11, 585.	3.7	O
2	Evaluation of the Microbiome in Men Taking Pre-exposure Prophylaxis for HIV Prevention. AIDS and Behavior, 2021, 25, 2005-2013.	2.7	9
3	Coffee Consumption Modulates Amoxicillin-Induced Dysbiosis in the Murine Gut Microbiome. Frontiers in Microbiology, 2021, 12, 637282.	3.5	5
4	Genotoxic Agents Produce Stressor-Specific Spectra of Spectinomycin Resistance Mutations Based on Mechanism of Action and Selection in Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0089121.	3.2	1
5	Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. MBio, 2021, 12, e0287821.	4.1	21
6	Streptozotocin-induced hyperglycemia alters the cecal metabolome and exacerbates antibiotic-induced dysbiosis. Cell Reports, 2021, 37, 110113.	6.4	11
7	Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. IScience, 2020, 23, 101875.	4.1	1
8	Consumption of a Western-Style Diet Modulates the Response of the Murine Gut Microbiome to Ciprofloxacin. MSystems, 2020, 5, .	3.8	23
9	Metatranscriptomics Reveals Antibiotic-Induced Resistance Gene Expression in the Murine Gut Microbiota. Frontiers in Microbiology, 2020, 11 , 322.	3.5	16
10	Antimicrobial Resistance Gene Prevalence in a Population of Patients with Advanced Dementia Is Related to Specific Pathobionts. IScience, 2020, 23, 100905.	4.1	7
11	Filling a hole in ozone research: The impacts of early life microbiome alterations on pulmonary responses to a nonâ€atopic asthma trigger. Physiological Reports, 2020, 8, e14346.	1.7	O
12	Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behavior, and Immunity, 2020, 88, 308-324.	4.1	115
13	Defining the Distinct Skin and Gut Microbiomes of the Northern Pike (Esox lucius). Frontiers in Microbiology, 2019, 10, 2118.	3.5	25
14	Microbial Metabolism Modulates Antibiotic Susceptibility within the Murine Gut Microbiome. Cell Metabolism, 2019, 30, 800-823.e7.	16.2	70
15	Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Scientific Reports, 2019, 9, 829.	3.3	41
16	Metabolismâ€induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO Journal, 2019, 38, e101597.	7.8	41
17	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	95
18	The impact of vegan production on the kimchi microbiome. Food Microbiology, 2018, 74, 171-178.	4.2	37

#	Article	IF	CITATIONS
19	Coinfection With Influenza A Virus and Klebsiella oxytoca: An Underrecognized Impact on Host Resistance and Tolerance to Pulmonary Infections. Frontiers in Immunology, 2018, 9, 2377.	4.8	7
20	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
21	Checkpoint Proteins and the Microbiome: Changes in the Peritoneal and Terminal lleum Microbiota in the Presence/Absence of Programmed Cell Death Receptor-1 in Murine Neonates. Journal of the American College of Surgeons, 2018, 227, S79-S80.	0.5	0
22	Microbial Community Analysis of Sauerkraut Fermentation Reveals a Stable and Rapidly Established Community. Foods, 2018, 7, 77.	4.3	73
23	Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals, 2018, 11, 14.	3.8	54
24	Microbial competition between Escherichia coli and Candida albicans reveals a soluble fungicidal factor. Microbial Cell, 2018, 5, 249-255.	3.2	44
25	Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control. Cell Chemical Biology, 2017, 24, 195-206.	5.2	264
26	The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Scientific Reports, 2017, 7, 11040.	3.3	34
27	A role for the bacterial GATC methylome in antibiotic stress survival. Nature Genetics, 2016, 48, 581-586.	21.4	85
28	Bactericidal antibiotics induce programmed metabolic toxicity. Microbial Cell, 2016, 3, 178-180.	3.2	10
29	Antibiotic efficacy is linked to bacterial cellular respiration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8173-8180.	7.1	544
30	Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. Cell Reports, 2015, 13, 968-980.	6.4	393
31	Antibiotics induce redox-related physiological alterations as part of their lethality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2100-9.	7.1	698
32	Fungicidal Drugs Induce a Common Oxidative-Damage Cellular Death Pathway. Cell Reports, 2013, 3, 350-358.	6.4	152
33	Antioxidant Strategies to Tolerate Antibiotics. Science, 2011, 334, 915-916.	12.6	46
34	Nrt1 and Tna1-Independent Export of NAD+ Precursor Vitamins Promotes NAD+ Homeostasis and Allows Engineering of Vitamin Production. PLoS ONE, 2011, 6, e19710.	2.5	33
35	Nicotinamide Riboside and Nicotinic Acid Riboside Salvage in Fungi and Mammals. Journal of Biological Chemistry, 2009, 284, 158-164.	3.4	77
36	Identification of Isn1 and Sdt1 as Glucose- and Vitamin-regulated Nicotinamide Mononucleotide and Nicotinic Acid Mononucleotide 5′-Nucleotidases Responsible for Production of Nicotinamide Riboside and Nicotinic Acid Riboside. Journal of Biological Chemistry, 2009, 284, 34861-34869.	3.4	51

PETER BELENKY

#	Article	IF	CITATIONS
37	Nicotinamide Riboside Kinase Structures Reveal New Pathways to NAD+. PLoS Biology, 2007, 5, e263.	5.6	126
38	Nicotinamide Riboside Promotes Sir2 Silencing and Extends Lifespan via Nrk and Urh1/Pnp1/Meu1 Pathways to NAD+. Cell, 2007, 129, 473-484.	28.9	351
39	NAD+ metabolism in health and disease. Trends in Biochemical Sciences, 2007, 32, 12-19.	7.5	808