A Santhana Krishna Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3200383/publications.pdf

Version: 2024-02-01

41 papers 2,439 citations

172386 29 h-index 276775 41 g-index

41 all docs

41 docs citations

times ranked

41

3057 citing authors

#	Article	IF	CITATIONS
1	Tapping the potential of a glucosamine polysaccharide-diatomaceous earth hybrid adsorbent in the solid phase extraction of a persistent organic pollutant and toxic pesticide 4,4â \in 2-DDT from water. RSC Advances, 2022, 12, 5489-5500.	1.7	8
2	Heavy metal and organic dye removal via a hybrid porous hexagonal boron nitride-based magnetic aerogel. Npj Clean Water, 2022, 5, .	3.1	37
3	Two in One: Poly(ethyleneimine)-Modified MnO ₂ Nanosheets for Ultrasensitive Detection and Catalytic Reduction of 2,4,6-Trinitrotoluene and Other Nitro Aromatics. ACS Sustainable Chemistry and Engineering, 2021, 9, 1142-1151.	3.2	13
4	Self-Assembly of Poly(ethyleneimine)-Modified g-C ₃ N ₄ Nanosheets with Lysozyme Fibrils for Chromium Detoxification. Langmuir, 2021, 37, 7147-7155.	1.6	17
5	Prospective application of diethylaminoethyl cellulose (DEAE-cellulose) with a high adsorption capacity toward the detoxification of 2,4-dichlorophenoxyacetic acid (2,4-D) from water. RSC Advances, 2021, 11, 22640-22651.	1.7	11
6	Perspective on recent developments of near infrared-emitting gold nanoclusters: applications in sensing and bio-imaging. Analytical Methods, 2020, 12, 1809-1826.	1.3	35
7	L-cystine-linked BODIPY-adsorbed monolayer MoS2 quantum dots for ratiometric fluorescent sensing of biothiols based on the inner filter effect. Analytica Chimica Acta, 2020, 1113, 43-51.	2.6	27
8	Magnetically Separable Nanospherical g-C ₃ N ₄ @Fe ₃ O ₄ as a Recyclable Material for Chromium Adsorption and Visible-Light-Driven Catalytic Reduction of Aromatic Nitro Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 6662-6671.	3.2	53
9	Impact of fluoride in potable water – An outlook on the existing defluoridation strategies and the road ahead. Coordination Chemistry Reviews, 2019, 387, 121-128.	9.5	50
10	Cerium(<scp>iii</scp>)-directed assembly of glutathione-capped gold nanoclusters for sensing and imaging of alkaline phosphatase-mediated hydrolysis of adenosine triphosphate. Nanoscale, 2018, 10, 17691-17698.	2.8	78
11	Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with 2 -cyclodextrin functionalized graphene oxide an excellent adsorption of As(V)/(III). Journal of Molecular Liquids, 2017, 237, 387-401.	2.3	73
12	Synthesis and Characterization of Two-Dimensional Transition Metal Dichalcogenide Magnetic MoS $<$ sub $<$ 2 $<$ /sub $<$ 6 $<$ 6 $<$ 6 $<$ 6 $<$ 7 $<$ 7 $<$ 7 $<$ 8 $<$ 8 $<$ 8 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9 $<$ 9	1.6	107
13	A perspective on diverse adsorbent materials to recover precious palladium and the way forward. RSC Advances, 2017, 7, 52133-52142.	1.7	57
14	Probing the Interaction between Fluoride and the Polysaccharides in Al(III)- and Zr (IV)-Modified Tea Waste by Using Diverse Analytical Characterization Techniques. ChemistrySelect, 2017, 2, 10123-10135.	0.7	10
15	Chitosan-functionalized graphene oxide: A novel adsorbent an efficient adsorption of arsenic from aqueous solution. Journal of Environmental Chemical Engineering, 2016, 4, 1698-1713.	3.3	217
16	Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II). Journal of Environmental Chemical Engineering, 2016, 4, 2052-2065.	3.3	62
17	The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives—A perspective. Coordination Chemistry Reviews, 2016, 317, 157-166.	9.5	82
18	Aluminium hydroxide impregnated macroreticular aromatic polymeric resin as a sustainable option for defluoridation. Journal of Environmental Chemical Engineering, 2015, 3, 630-641.	3.3	17

#	Article	IF	CITATIONS
19	Effective adsorption of chromium(<scp>vi</scp>)/Cr(<scp>iii</scp>) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry A, 2015, 3, 7044-7057.	5.2	201
20	Preparation and characterization of exfoliated graphene oxide– <scp>l</scp> -cystine as an effective adsorbent of Hg(<scp>ii</scp>) adsorption. RSC Advances, 2015, 5, 6294-6304.	1.7	71
21	Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium. International Journal of Biological Macromolecules, 2015, 72, 633-639.	3.6	61
22	Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr(VI) adsorption. International Journal of Biological Macromolecules, 2014, 66, 135-143.	3.6	66
23	A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption. Ultrasonics Sonochemistry, 2014, 21, 1090-1099.	3.8	74
24	An Integrated Use of Biopolymer-Ceramic Composites Towards Capacitor and Environmental Application. Polymer-Plastics Technology and Engineering, 2014, 53, 626-630.	1.9	1
25	Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chemical Engineering Journal, 2014, 235, 176-185.	6.6	95
26	Graphene oxide–aluminium oxyhydroxide interaction and its application for the effective adsorption of fluoride. RSC Advances, 2014, 4, 53711-53721.	1.7	115
27	Enhanced adsorption of hexavalent chromium arising out of an admirable interaction between a synthetic polymer and an ionic liquid. Chemical Engineering Journal, 2013, 222, 454-463.	6.6	31
28	Microwave assisted preparation of glycidyl methacrylate grafted cellulose adsorbent for the effective adsorption of mercury from a coal fly ash sample. Journal of Environmental Chemical Engineering, 2013, 1, 1359-1367.	3.3	22
29	A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chemical Engineering Journal, 2013, 230, 328-337.	6.6	94
30	Efficacy of novel Al–Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water. Journal of Environmental Chemical Engineering, 2013, 1, 1325-1335.	3.3	62
31	Adsorptive Demercuration by Virtue of an Appealing Interaction Involving Biopolymer Cellulose and Mercaptobenzothiazole. Industrial & Engineering Chemistry Research, 2013, 52, 11838-11849.	1.8	38
32	Exploring the interesting interaction between graphene oxide, Aliquat-336 (a room temperature ionic) Tj ETQq0 (0 0 rgBT /(Overlock 10 T
33	Potential application of dodecylamine modified sodium montmorillonite as an effective adsorbent for hexavalent chromium. Chemical Engineering Journal, 2012, 211-212, 396-405.	6.6	68
34	A Meticulous Study on the Adsorption of Mercury as Tetrachloromercurate(II) Anion with Trioctylamine Modified Sodium Montmorillonite and Its Application to a Coal Fly Ash Sample. Industrial & Degree Chemistry Research, 2012, 51, 11312-11327.	1.8	28
35	Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. Journal of Hazardous Materials, 2012, 239-240, 213-224.	6.5	59
36	Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater. Industrial & Engineering Chemistry Research, 2012, 51, 58-69.	1.8	196

#	Article	IF	CITATIONS
37	Microwave assisted solvent free green preparation and physicochemical characterization of surfactant-anchored cellulose and its relevance toward the effective adsorption of chromium. Journal of Colloid and Interface Science, 2012, 372, 88-98.	5.0	31
38	An efficient ultrasound assisted approach for the impregnation of room temperature ionic liquid onto Dowex $1\tilde{A}$ —8 resin matrix and its application toward the enhanced adsorption of chromium (VI). Journal of Hazardous Materials, 2012, 213-214, 249-257.	6.5	41
39	Trialkylamine Impregnated Macroporous Polymeric Sorbent for the Effective Removal of Chromium from Industrial Wastewater. Journal of Chemical & Engineering Data, 2011, 56, 2295-2304.	1.0	45
40	An enhanced adsorption methodology for the detoxification of chromium using n-octylamine impregnated Amberlite XAD-4 polymeric sorbent. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1598-1610.	0.9	9
41	Microwave assisted preparation and characterization of biopolymer-clay composite material and its application for chromium detoxification from industrial effluent. Advanced Materials Letters, 2011, 2, 383-391.	0.3	11