Yuka Kanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/319968/publications.pdf Version: 2024-02-01

YUKA KANNO

#	Article	IF	CITATIONS
1	Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harbor Perspectives in Biology, 2022, 14, a037952.	5.5	6
2	MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity, 2021, 54, 514-525.e6.	14.3	30
3	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	14.3	46
4	SnapShot: Jak-STAT Signaling II. Cell, 2020, 181, 1696-1696.e1.	28.9	53
5	Gata6+ Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity, 2019, 51, 131-140.e5.	14.3	110
6	Neuropeptide CGRP Limits Group 2 Innate Lymphoid Cell Responses and Constrains Type 2 Inflammation. Immunity, 2019, 51, 682-695.e6.	14.3	192
7	The Magnitude of IFN-γ Responses Is Fine-Tuned by DNA Architecture and the Non-coding Transcript of Ifng-as1. Molecular Cell, 2019, 75, 1229-1242.e5.	9.7	58
8	Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity, 2019, 50, 106-120.e10.	14.3	54
9	GoldiRunx and Remembering Cytotoxic Memory. Immunity, 2018, 48, 614-615.	14.3	1
10	NCR ⁺ ILC3 maintain larger STAT4 reservoir via Tâ€BET to regulate type 1 features upon ILâ€⊋3 stimulation in mice. European Journal of Immunology, 2018, 48, 1174-1180.	2.9	33
11	Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. Journal of Leukocyte Biology, 2018, 104, 499-514.	3.3	122
12	The Transcription Factor T-bet Limits Amplification of Type I IFN Transcriptome and Circuitry in T Helper 1 Cells. Immunity, 2017, 46, 983-991.e4.	14.3	79
13	Mechanisms and consequences of Jak–STAT signaling in the immune system. Nature Immunology, 2017, 18, 374-384.	14.5	870
14	Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 2999-3014.	8.5	85
15	JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nature Reviews Drug Discovery, 2017, 16, 843-862.	46.4	759
16	Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell, 2016, 165, 1120-1133.	28.9	273
17	BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 factors to enhancers. Nature Immunology, 2016, 17, 851-860.	14.5	221
18	Targeting cytokine signaling in autoimmunity: back to the future and beyond. Current Opinion in Immunology, 2016, 43, 89-97.	5.5	47

#	Article	IF	CITATIONS
19	Interleukin-23-Induced Transcription Factor Blimp-1 Promotes Pathogenicity of T Helper 17 Cells. Immunity, 2016, 44, 131-142.	14.3	131
20	IL-10 induces a STAT3-dependent autoregulatory loop in T _H 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Science Immunology, 2016, 1, .	11.9	26
21	Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. ELife, 2016, 5, .	6.0	74
22	Lymphocyte Identity and Genomic Switches. Epigenetics and Human Health, 2016, , 41-52.	0.2	0
23	EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 2015, 5, 10643.	3.3	129
24	PAPST, a User Friendly and Powerful Java Platform for ChIP-Seq Peak Co-Localization Analysis and Beyond. PLoS ONE, 2015, 10, e0127285.	2.5	10
25	A Metabolic Switch for Th17 Pathogenicity. Cell, 2015, 163, 1308-1310.	28.9	9
26	Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature, 2015, 520, 558-562.	27.8	323
27	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	14.3	137
28	Mechanisms of Jak/STAT Signaling in Immunity and Disease. Journal of Immunology, 2015, 194, 21-27.	0.8	440
29	A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood, 2014, 123, 2978-2987.	1.4	71
30	In Search of Magic Bullets: The Golden Age of Immunotherapeutics. Cell, 2014, 157, 227-240.	28.9	40
31	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	1.1	57
32	Type I IFN Induces Binding of STAT1 to Bcl6: Divergent Roles of STAT Family Transcription Factors in the T Follicular Helper Cell Genetic Program. Journal of Immunology, 2014, 192, 2156-2166.	0.8	95
33	BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nature Structural and Molecular Biology, 2014, 21, 1047-1057.	8.2	247
34	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	6.0	76
35	Proliferation Conditions Promote Intrinsic Changes in NK Cells for an IL-10 Response. Journal of Immunology, 2014, 193, 354-363.	0.8	33
36	BACH2 represses effector programs to stabilize Treg-mediated immune homeostasis. Nature, 2013, 498, 506-510.	27.8	332

#	Article	IF	CITATIONS
37	Helper Tâ€cell identity and evolution of differential transcriptomes and epigenomes. Immunological Reviews, 2013, 252, 24-40.	6.0	90
38	Mechanisms underlying helper T-cell plasticity: Implications for immune-mediated disease. Journal of Allergy and Clinical Immunology, 2013, 131, 1276-1287.	2.9	138
39	Transcription factors and <scp>CD</scp> 4 T cells seeking identity: masters, minions, setters and spikers. Immunology, 2013, 139, 294-298.	4.4	25
40	Tissue Inhibitor of Metalloproteinase 1 Is Preferentially Expressed in Th1 and Th17 T-Helper Cell Subsets and Is a Direct Stat Target Gene. PLoS ONE, 2013, 8, e59367.	2.5	15
41	Regulating type 1 IFN effects in CD8 T cells during viral infections: changing STAT4 and STAT1 expression for function. Blood, 2012, 120, 3718-3728.	1.4	76
42	STATs Shape the Active Enhancer Landscape of T Cell Populations. Cell, 2012, 151, 981-993.	28.9	325
43	Distinct requirements for T-bet in gut innate lymphoid cells. Journal of Experimental Medicine, 2012, 209, 2331-2338.	8.5	160
44	TGF-Î ² and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nature Immunology, 2012, 13, 587-595.	14.5	255
45	The Transcription Factors Thpok and LRF Are Necessary and Partly Redundant for T Helper Cell Differentiation. Immunity, 2012, 37, 622-633.	14.3	39
46	Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via Induction of the Ligand PD-L1. Immunity, 2012, 36, 1017-1030.	14.3	229
47	Helper T cell diversity and plasticity. Current Opinion in Immunology, 2012, 24, 297-302.	5.5	267
48	Function of JAKs and STATs in Lymphocytes: Bench to Bedside. , 2012, , 205-237.		0
49	Transcriptional and Epigenetic Control of T Helper Cell Specification: Molecular Mechanisms Underlying Commitment and Plasticity. Annual Review of Immunology, 2012, 30, 707-731.	21.8	296
50	Cytokine Signaling: Birth of a Pathway. Journal of Immunology, 2011, 187, 5475-5478.	0.8	44
51	Functional and Epigenetic Studies Reveal Multistep Differentiation and Plasticity of InÂVitro-Generated and InÂVivo-Derived Follicular T Helper Cells. Immunity, 2011, 35, 622-632.	14.3	232
52	Early Th1 Cell Differentiation Is Marked by a Tfh Cell-like Transition. Immunity, 2011, 35, 919-931.	14.3	364
53	Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology, 2011, 134, 235-245.	4.4	96
54	Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunology, 2011, 12, 247-254.	14.5	522

#	Article	IF	CITATIONS
55	Genomic views of STAT function in CD4+ T helper cell differentiation. Nature Reviews Immunology, 2011, 11, 239-250.	22.7	251
56	Diverse Targets of the Transcription Factor STAT3 Contribute to T Cell Pathogenicity and Homeostasis. Immunity, 2010, 32, 605-615.	14.3	605
57	Discrete Roles of STAT4 and STAT6 Transcription Factors in Tuning Epigenetic Modifications and Transcription during T Helper Cell Differentiation. Immunity, 2010, 32, 840-851.	14.3	290
58	Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature, 2010, 467, 967-971.	27.8	1,253
59	Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine and Growth Factor Reviews, 2010, 21, 425-434.	7.2	195
60	Global Mapping of H3K4me3 and H3K27me3 Reveals Specificity and Plasticity in Lineage Fate Determination of Differentiating CD4+ T Cells. Immunity, 2009, 30, 155-167.	14.3	1,005
61	Lymphoid tissue inducer–like cells are an innate source of IL-17 and IL-22. Journal of Experimental Medicine, 2009, 206, 35-41.	8.5	653
62	Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature, 2008, 452, 773-776.	27.8	1,046
63	Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood, 2008, 111, 1013-1020.	1.4	392
64	Tpl2 kinase regulates T cell interferon-γ production and host resistance to <i>Toxoplasma gondii </i> . Journal of Experimental Medicine, 2008, 205, 2803-2812.	8.5	86
65	New complexities in helper T cell fate determination and the implications for autoimmune diseases. Modern Rheumatology, 2008, 18, 533-541.	1.8	42
66	New complexities in helper T cell fate determination and the implications for autoimmune diseases. Modern Rheumatology, 2008, 18, 533-541.	1.8	34
67	Tpl2 kinase regulates T cell interferon-g production and host resistance toToxoplasma gondii. Journal of Cell Biology, 2008, 183, i10-i10.	5.2	0
68	A Fas-Associated Death Domain Protein/Caspase-8-Signaling Axis Promotes S-Phase Entry and Maintains S6 Kinase Activity in T Cells Responding to IL-2. Journal of Immunology, 2007, 179, 5291-5300.	0.8	28
69	Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood, 2007, 109, 4368-4375.	1.4	488
70	Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 2007, 26, 371-381.	14.3	1,317
71	T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on <i>IFNG</i> gene acetylation and transcription. Journal of Experimental Medicine, 2006, 203, 755-766.	8.5	286
72	Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma. Blood, 2006, 108, 983-985.	1.4	65

#	Article	IF	CITATIONS
73	Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8137-8142.	7.1	580
74	CELL SIGNALING: Stat Acetylation-A Key Facet of Cytokine Signaling?. Science, 2005, 307, 217-218.	12.6	54
75	Immune Cell-Specific Amplification of Interferon Signaling by the IRF-4/8-PU.1 Complex. Journal of Interferon and Cytokine Research, 2005, 25, 770-779.	1.2	112
76	Jak3-Independent Trafficking of the Common γ Chain Receptor Subunit: Chaperone Function of Jaks Revisited. Molecular and Cellular Biology, 2004, 24, 5039-5049.	2.3	46
77	Discrete Roles for Histone Acetylation in Human T Helper 1 Cell-specific Gene Expression. Journal of Biological Chemistry, 2004, 279, 40640-40646.	3.4	67
78	Signaling by ILâ€12 and ILâ€23 and the immunoregulatory roles of STAT4. Immunological Reviews, 2004, 202, 139-156.	6.0	493
79	Selective Recognition of Acetylated Histones by Bromodomain Proteins Visualized in Living Cells. Molecular Cell, 2004, 13, 33-43.	9.7	341
80	Interaction of Histone Acetylases and Deacetylases In Vivo. Molecular and Cellular Biology, 2003, 23, 1025-1033.	2.3	78
81	Gamma Interferon Triggers Interaction between ICSBP (IRF-8) and TEL, Recruiting the Histone Deacetylase HDAC3 to the Interferon-Responsive Element. Molecular and Cellular Biology, 2002, 22, 7439-7448.	2.3	65
82	Cytoplasmic Sequestration of the Polyomavirus Enhancer Binding Protein 2 (PEBP2)/Core Binding Factor α (CBFα) Subunit by the Leukemia-Related PEBP2/CBFβ-SMMHC Fusion Protein Inhibits PEBP2/CBF-Mediated Transactivation. Molecular and Cellular Biology, 1998, 18, 4252-4261.	2.3	76
83	Intrinsic Transcriptional Activation-Inhibition Domains of the Polyomavirus Enhancer Binding Protein 2/Core Binding Factor α Subunit Revealed in the Presence of the β Subunit. Molecular and Cellular Biology, 1998, 18, 2444-2454.	2.3	189
84	Immunodeficiency and Chronic Myelogenous Leukemia-like Syndrome in Mice with a Targeted Mutation of the ICSBP Gene. Cell, 1996, 87, 307-317.	28.9	615
85	The mouse Rxrb gene encoding RXRÎ ² : genomic organization and two mRNA isoforms generated by alternative splicing of transcripts initiated from CpG island promoters. Gene, 1994, 142, 183-189.	2.2	43
86	Differences in myocardial fluoro-18 2-deoxyglucose uptake in young versus older patients with hypertrophic cardiomyopathy. American Journal of Cardiology, 1992, 69, 242-246.	1.6	14