Joshua M Lyte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3199506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	28.8	2,304
2	Shortâ€chain fatty acids: microbial metabolites that alleviate stressâ€induced brain–gut axis alterations. Journal of Physiology, 2018, 596, 4923-4944.	2.9	460
3	Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study. Lipids in Health and Disease, 2016, 15, 186.	3.0	56
4	Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome, 2020, 8, 67.	11.1	55
5	Volatility as a Concept to Understand the Impact of Stress on the Microbiome. Psychoneuroendocrinology, 2021, 124, 105047.	2.7	54
6	Resilience to chronic stress is associated with specific neurobiological, neuroendocrine and immune responses. Brain, Behavior, and Immunity, 2019, 80, 583-594.	4.1	45
7	Resistant Starch Alters the Microbiota-Gut Brain Axis: Implications for Dietary Modulation of Behavior. PLoS ONE, 2016, 11, e0146406.	2.5	45
8	Gutâ€brain axis serotonergic responses to acute stress exposure are microbiomeâ€dependent. Neurogastroenterology and Motility, 2020, 32, e13881.	3.0	30
9	The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain, Behavior, and Immunity, 2020, 84, 209-217.	4.1	25
10	Eating for 3.8 × 1013: Examining the Impact of Diet and Nutrition on the Microbiota-Gut-Brain Axis Through the Lens of Microbial Endocrinology. Frontiers in Endocrinology, 2018, 9, 796.	3.5	21
11	Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain, Behavior, and Immunity, 2021, 97, 119-134.	4.1	19
12	ZrCl4-catalyzed X–C/C–C bond formation for the geometric selective synthesis of (E)-β-iodo aza Morita–Baylis–Hillman (MBH) adducts. Tetrahedron Letters, 2006, 47, 7699-7702.	1.4	18
13	Serotonin modulates Campylobacter jejuni physiology and in vitro interaction with the gut epithelium. Poultry Science, 2021, 100, 100944.	3.4	15
14	Volatile compound characterization of modified atmosphere packaged ground beef held under temperature abuse. Food Control, 2016, 59, 1-6.	5.5	14
15	Gut microbiome-mediated modulation of hepatic cytochrome P450 and P-glycoprotein: impact of butyrate and fructo-oligosaccharide-inulin. Journal of Pharmacy and Pharmacology, 2020, 72, 1072-1081.	2.4	13
16	Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions. Microbiome, 2021, 9, 38.	11.1	11
17	Exploring the Impact of the Microbiome on Neuroactive Steroid Levels in Germ-Free Animals. International Journal of Molecular Sciences, 2021, 22, 12551.	4.1	11
18	Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production. Poultry Science, 2022, 101, 101588.	3.4	9

#	Article	IF	CITATIONS
19	A neurochemical biogeography of the broiler chicken intestinal tract. Poultry Science, 2022, 101, 101671.	3.4	8
20	Distinct Cecal and Fecal Microbiome Responses to Stress Are Accompanied by Sex- and Diet-Dependent Changes in Behavior and Gut Serotonin. Frontiers in Neuroscience, 2022, 16, 827343.	2.8	7