Alessandra Ottani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3197783/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Stress in Alzheimer's Disease: In Vitro Therapeutic Effect of Amniotic Fluid Stem Cells Extracellular Vesicles. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	4.0	13
2	Mechanisms of Hydrogen Sulfide against the Progression of Severe Alzheimer's Disease in Transgenic Mice at Different Ages. Pharmacology, 2019, 103, 50-60.	2.2	50
3	Melanocortin Receptor-4 and Glioblastoma Cells: Effects of the Selective Antagonist ML00253764 Alone and in Combination with Temozolomide In Vitro and In Vivo. Molecular Neurobiology, 2018, 55, 4984-4997.	4.0	6
4	Effects of COX1-2/5-LOX blockade in Alzheimer transgenic 3xTg-AD mice. Inflammation Research, 2017, 66, 389-398.	4.0	37
5	Multiple beneficial effects of melanocortin MC4 receptor agonists in experimental neurodegenerative disorders: Therapeutic perspectives. Progress in Neurobiology, 2017, 148, 40-56.	5.7	28
6	NDP-α-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Molecular and Cellular Neurosciences, 2015, 67, 13-21.	2.2	34
7	NDP-α-MSH attenuates heart and liver responses to myocardial reperfusion via the vagus nerve and JAK/ERK/STAT signaling. European Journal of Pharmacology, 2015, 769, 22-32.	3.5	14
8	Protective effects of the melanocortin analog NDP-α-MSH in rats undergoing cardiac arrest. European Journal of Pharmacology, 2014, 745, 108-116.	3.5	16
9	Melanocortins protect against brain damage and counteract cognitive decline in a transgenic mouse model of moderate Alzheimer׳s disease. European Journal of Pharmacology, 2014, 740, 144-150.	3.5	26
10	Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiology of Aging, 2014, 35, 537-547.	3.1	62
11	Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacological Research, 2013, 72, 1-8.	7.1	29
12	Hydrogen sulfide slows down progression of experimental Alzheimer's disease by targeting multiple pathophysiological mechanisms. Neurobiology of Learning and Memory, 2013, 104, 82-91.	1.9	214
13	Up-regulation of the canonical Wnt-3A and Sonic hedgehog signaling underlies melanocortin-induced neurogenesis after cerebral ischemia. European Journal of Pharmacology, 2013, 707, 78-86.	3.5	45
14	Protective effects of melanocortins on short-term changes in a rat model of traumatic brain injury*. Critical Care Medicine, 2012, 40, 945-951.	0.9	31
15	Centrally acting leptin induces a resuscitating effect in haemorrhagic shock in rats. Regulatory Peptides, 2012, 176, 45-50.	1.9	4
16	Melanocortins as potential therapeutic agents in severe hypoxic conditions. Frontiers in Neuroendocrinology, 2012, 33, 179-193.	5.2	31
17	Molecular Changes Induced in Rat Liver by Hemorrhage and Effects of Melanocortin Treatment. Anesthesiology, 2012, 116, 692-700.	2.5	10
18	Melanocortin 4 Receptor Activation Protects Against Testicular Ischemia-Reperfusion Injury by Triggering the Cholinergic Antiinflammatory Pathway. Endocrinology, 2011, 152, 3852-3861.	2.8	25

ALESSANDRA OTTANI

#	Article	IF	CITATIONS
19	Melanocortin 4 receptor stimulation decreases pancreatitis severity in rats by activation of the cholinergic anti-inflammatory pathway*. Critical Care Medicine, 2011, 39, 1089-1096.	0.9	50
20	Melanocortins protect against multiple organ dysfunction syndrome in mice. British Journal of Pharmacology, 2011, 162, 917-928.	5.4	23
21	Melanocortin MC4 receptor agonists counteract late inflammatory and apoptotic responses and improve neuronal functionality after cerebral ischemia. European Journal of Pharmacology, 2011, 670, 479-486.	3.5	46
22	Treatment of cerebral ischemia with melanocortins acting at MC4 receptors induces marked neurogenesis and long-lasting functional recovery. Acta Neuropathologica, 2011, 122, 443-453.	7.7	51
23	Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. European Journal of Pharmacology, 2010, 637, 124-130.	3.5	34
24	Melanocortins and the Cholinergic Anti-Inflammatory Pathway. Advances in Experimental Medicine and Biology, 2010, 681, 71-87.	1.6	27
25	High mobility group box-1 expression correlates with poor outcome in lung injury patients. Pharmacological Research, 2010, 61, 116-120.	7.1	36
26	Functional recovery after delayed treatment of ischemic stroke with melanocortins is associated with overexpression of the activity-dependent gene Zif268. Brain, Behavior, and Immunity, 2009, 23, 844-850.	4.1	31
27	Regulation of hypothalamic endocannabinoid levels by neuropeptides and hormones involved in food intake and metabolism: Insulin and melanocortins. Neuropharmacology, 2008, 54, 206-212.	4.1	44
28	Dual Acting Anti-Inflammatory Drugs. Current Topics in Medicinal Chemistry, 2007, 7, 265-275.	2.1	97
29	Preference for palatable food is reduced by the gamma-hydroxybutyrate analogue GET73, in rats. Pharmacological Research, 2007, 55, 271-279.	7.1	14
30	Similarities and Differences Between Chronic Migraine and Episodic Migraine. Headache, 2007, 47, 65-72.	3.9	87
31	Neuroprotection in focal cerebral ischemia owing to delayed treatment with melanocortins. European Journal of Pharmacology, 2007, 570, 57-65.	3.5	43
32	Paracetamol: New Vistas of an Old Drug. CNS Neuroscience & Therapeutics, 2006, 12, 250-275.	4.0	460
33	The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. European Journal of Pharmacology, 2006, 531, 280-281.	3.5	210
34	Adverse reactions related to drugs for headache treatment: clinical impact. European Journal of Clinical Pharmacology, 2005, 60, 893-900.	1.9	8
35	Headache Treatment Before and After the Consultation of a Specialized Centre: A Pharmacoepidemiology Study. Cephalalgia, 2004, 24, 356-362.	3.9	39
36	Effect of late treatment with γ-hydroxybutyrate on the histological and behavioral consequences of transient brain ischemia in the rat. European Journal of Pharmacology, 2004, 485, 183-191.	3.5	22

ALESSANDRA OTTANI

#	Article	IF	CITATIONS
37	Effect of sumatriptan in different models of pain in rats. European Journal of Pharmacology, 2004, 497, 181-186.	3.5	17
38	Effect of γ-hydroxybutyrate in two rat models of focal cerebral damage. Brain Research, 2003, 986, 181-190.	2.2	52
39	Selective COX-2 Inhibitors and Dual Acting Anti-inflammatory Drugs: Critical Remarks. Current Medicinal Chemistry, 2002, 9, 1033-1043.	2.4	146
40	Influence of sildenafil on central dopamine-mediated behaviour in male rats. Life Sciences, 2002, 70, 1501-1508.	4.3	41
41	Influence of sildenafil on copulatory behaviour in sluggish or normal ejaculator male rats: a central dopamine mediated effect?. Neuropharmacology, 2002, 42, 562-567.	4.1	38
42	Neuroleptic-like profile of the cannabinoid agonist, HU 210, on rodent behavioural models. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 91-96.	4.8	7
43	Modulatory activity of sildenafil on copulatory behaviour of both intact and castrated male rats. Pharmacology Biochemistry and Behavior, 2002, 72, 717-722.	2.9	25
44	Dual acting anti-inflammatory drugs: a reappraisal. Pharmacological Research, 2001, 44, 437-450.	7.1	180
45	HU 210: A Potent Tool for Investigations of the Cannabinoid System. CNS Neuroscience & Therapeutics, 2001, 7, 131-145.	4.0	45
46	Effects of the cannabinoid receptor agonist, HU 210, on ingestive behaviour and body weight of rats. European Journal of Pharmacology, 2000, 391, 275-279.	3.5	39
47	Neuroprotective effect of γ-hydroxybutyrate in transient global cerebral ischemia in the rat. European Journal of Pharmacology, 2000, 397, 75-84.	3.5	36
48	Inhibitory effects of the cannabinoid agonist HU 210 on rat sexual behaviour. Physiology and Behavior, 2000, 69, 547-554.	2.1	48
49	The potentiation of analgesic activity of paracetamol plus morphine involves the serotonergic system in rat brain. Inflammation Research, 1999, 48, 120-127.	4.0	27
50	Cannabimimetic Activity in Rats and Pigeons of HU 210, a Potent Antiemetic Drug. Pharmacology Biochemistry and Behavior, 1999, 62, 75-80.	2.9	47
51	Learning Impairment Produced in Rats by the Cannabinoid Agonist HU 210 in a Water-Maze Task. Pharmacology Biochemistry and Behavior, 1999, 64, 555-561.	2.9	106
52	Gamma-hydroxybutyrate increases gastric emptying in rats. Life Sciences, 1999, 64, 2149-2154.	4.3	11
53	Influence of the cannabinoid agonist HU 210 on cocaine- and CQP 201-403- induced behavioural effects in rat. Life Sciences, 1999, 65, 823-831.	4.3	39
54	Acetylsalicylic acid potentiates the antinociceptive effect of morphine in the rat: involvement of the central serotonergic system. European Journal of Pharmacology, 1998, 355, 133-140.	3.5	22

#	Article	IF	CITATIONS
55	Effect of Acetylsalicylic Acid on Formalin Test and on Serotonin System in the Rat Brain. General Pharmacology, 1998, 31, 753-758.	0.7	17
56	Streptozotocin-induced diabetes provokes changes in serotonin concentration and on 5-HT1A and 5-HT2 receptors in the rat brain. Life Sciences, 1997, 60, 1393-1397.	4.3	54
57	Effect of acute and chronic treatment with triiodothyronine on serotonin levels and serotonergic receptor subtypes in the rat brain. Life Sciences, 1996, 58, 1551-1559.	4.3	53