List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3196169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards circular phosphorus: The need of inter- and transdisciplinary research to close the broken cycle. Ambio, 2022, 51, 611-622.	5.5	19
2	A meta-analysis of phosphatase activity in agricultural settings in response to phosphorus deficiency. Soil Biology and Biochemistry, 2022, 165, 108537.	8.8	22
3	Soil and Sustainable Development Goals, ed by Lal, R., Horn, R. & Kosaki, T. Catena/Schweizerbart, Stuttgart, 2018. vii + 196 pp. Paperback, â,¬29.90. ISBN ―978â€3â€510â€65425â€3. European Journal o 2021, 72, 487-488.	of S ai bScie	ncø
4	Long term sugarcane straw removal affects soil phosphorus dynamics. Soil and Tillage Research, 2021, 208, 104898.	5.6	13
5	Effects of substrate quality on carbon partitioning and microbial community composition in soil from an agricultural grassland. Applied Soil Ecology, 2021, 161, 103881.	4.3	7
6	Cycling of reduced phosphorus compounds in soil and potential impacts of climate change. European Journal of Soil Science, 2021, 72, 2517-2537.	3.9	13
7	Citric Acid Effect on the Abundance, Size and Composition of Water-Dispersible Soil Colloids and Its Relationship to Soil Phosphorus Desorption: A Case Study. Journal of Soil Science and Plant Nutrition, 2021, 21, 2436-2446.	3.4	9
8	Local solutions to global phosphorus imbalances. Nature Food, 2021, 2, 459-460.	14.0	14
9	On pedagogy of a Soil Science Centre for Doctoral Training. European Journal of Soil Science, 2021, 72, 2320-2329.	3.9	1
10	Innovations in soil science to address global grand challenges. European Journal of Soil Science, 2021, 72, 2317-2319.	3.9	1
11	Using a meta-analysis approach to understand complexity in soil biodiversity and phosphorus acquisition in plants. Soil Biology and Biochemistry, 2020, 142, 107695.	8.8	22
12	Phosphorus leaching from riparian soils with differing management histories under three grass species. Journal of Environmental Quality, 2020, 49, 74-84.	2.0	5
13	Identifying critical source areas using multiple methods for effective diffuse pollution mitigation. Journal of Environmental Management, 2019, 250, 109366.	7.8	26
14	Simultaneous Quantification of Soil Phosphorus Labile Pool and Desorption Kinetics Using DGTs and 3D-DIFS. Environmental Science & Technology, 2019, 53, 6718-6728.	10.0	23
15	Strong and recurring seasonality revealed within stream diatom assemblages. Scientific Reports, 2019, 9, 3313.	3.3	16
16	Transforming phosphorus use on the island of Ireland: A model for a sustainable system. Science of the Total Environment, 2019, 656, 852-861.	8.0	8
17	Phosphorus availability and dynamics in soil affected by long-term ruzigrass cover crop. Geoderma, 2019, 337, 434-443.	5.1	26
18	New approaches to enhance pollutant removal in artificially aerated wastewater treatment systems. Science of the Total Environment, 2018, 627, 1182-1194.	8.0	27

#	Article	IF	CITATIONS
19	Phosphorus acquisition by citrate―and phytaseâ€exuding <scp><i>Nicotiana tabacum</i></scp> plant mixtures depends on soil phosphorus availability and root intermingling. Physiologia Plantarum, 2018, 163, 356-371.	5.2	35
20	A profile of 70 years of soil research. European Journal of Soil Science, 2018, 69, 21-22.	3.9	0
21	The challenges of modelling phosphorus in a headwater catchment: Applying a â€`limits of acceptability' uncertainty framework to a water quality model. Journal of Hydrology, 2018, 558, 607-624.	5.4	41
22	On the history and future of soil organic phosphorus research: a critique across three generations. European Journal of Soil Science, 2018, 69, 86-94.	3.9	23
23	Root development impacts on the distribution of phosphatase activity: Improvements in quantification using soil zymography. Soil Biology and Biochemistry, 2018, 116, 158-166.	8.8	40
24	Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities. Plant and Soil, 2018, 427, 191-208.	3.7	145
25	The stocks and flows of nitrogen, phosphorus and potassium across a 30-year time series for agriculture in Huantai county, China. Science of the Total Environment, 2018, 619-620, 606-620.	8.0	21
26	Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant and Soil, 2018, 427, 5-16.	3.7	191
27	Inter- and intra-species intercropping of barley cultivars and legume species, as affected by soil phosphorus availability. Plant and Soil, 2018, 427, 125-138.	3.7	46
28	The Phosphorus Transfer Continuum: A Framework for Exploring Effects of Climate Change. Agricultural and Environmental Letters, 2018, 3, 180036.	1.2	20
29	Urochloa ruziziensis cover crop increases the cycling of soil inositol phosphates. Biology and Fertility of Soils, 2018, 54, 935-947.	4.3	9
30	The longâ€ŧerm soil phosphorus balance across Chinese arable land. Soil Use and Management, 2018, 34, 306-315.	4.9	18
31	Organic phosphorus: potential solutions for phosphorus security. Plant and Soil, 2018, 427, 1-3.	3.7	5
32	A method for uncertainty constraint of catchment discharge and phosphorus load estimates. Hydrological Processes, 2018, 32, 2779-2787.	2.6	15
33	Can tropical grasses grown as cover crops improve soil phosphorus availability?. Soil Use and Management, 2018, 34, 316-325.	4.9	9
34	Does the combination of citrate and phytase exudation in Nicotiana tabacum promote the acquisition of endogenous soil organic phosphorus?. Plant and Soil, 2017, 412, 43-59.	3.7	25
35	Water quality and <scp>UK</scp> agriculture: challenges and opportunities. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1201.	6.5	14
36	Linking the depletion of rhizosphere phosphorus to the heterologous expression of a fungal phytase in Nicotiana tabacum as revealed by enzyme-labile P and solution 31P NMR spectroscopy. Rhizosphere, 2017, 3, 82-91.	3.0	12

#	Article	IF	CITATIONS
37	Major agricultural changes required to mitigate phosphorus losses under climate change. Nature Communications, 2017, 8, 161.	12.8	121
38	Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil. Geoderma, 2017, 305, 346-353.	5.1	11
39	Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. Plant Science, 2017, 255, 12-28.	3.6	41
40	Strategies for sustainable nutrient management: insights from a mixed natural and social science analysis of Chinese crop production systems. Environmental Development, 2017, 21, 52-65.	4.1	17
41	Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land Use Policy, 2017, 61, 208-219.	5.6	34
42	Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data. Hydrology and Earth System Sciences, 2017, 21, 6425-6444.	4.9	9
43	Determining the Effect of Drying Time on Phosphorus Solubilization from Three Agricultural Soils under Climate Change Scenarios. Journal of Environmental Quality, 2017, 46, 1131-1136.	2.0	13
44	Uncertainty assessment of a dominant-process catchment model of dissolved phosphorus transfer. Hydrology and Earth System Sciences, 2016, 20, 4819-4835.	4.9	15
45	A methodâ€centric â€`User Manual' for the mitigation of diffuse water pollution from agriculture. Soil Use and Management, 2016, 32, 162-171.	4.9	20
46	Guiding phosphorus stewardship for multiple ecosystem services. Ecosystem Health and Sustainability, 2016, 2, .	3.1	30
47	Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9, 353-356.	12.9	282
48	Organic Acids Regulation of Chemical–Microbial Phosphorus Transformations in Soils. Environmental Science & Technology, 2016, 50, 11521-11531.	10.0	102
49	Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma, 2016, 284, 93-102.	5.1	47
50	Lattice Boltzmann method for the fractional advection-diffusion equation. Physical Review E, 2016, 93, 043310.	2.1	13
51	Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. Science of the Total Environment, 2016, 548-549, 325-339.	8.0	102
52	A Holistic Approach to Understanding the Desorption of Phosphorus in Soils. Environmental Science & Technology, 2016, 50, 3371-3381.	10.0	71
53	Can Policy Be Riskâ€Based? The Cultural Theory of Risk and the Case of Livestock Disease Containment. Sociologia Ruralis, 2015, 55, 379-399.	3.4	21
54	Dissolved Phosphorus Retention in Buffer Strips: Influence of Slope and Soil Type. Journal of Environmental Quality, 2015, 44, 1216-1224.	2.0	16

#	Article	IF	CITATIONS
55	Digital catchment observatories: A platform for engagement and knowledge exchange between catchment scientists, policy makers, and local communities. Water Resources Research, 2015, 51, 4815-4822.	4.2	24
56	Understanding and managing de-icer contamination of airport surface waters: A synthesis and future perspectives. Environmental Technology and Innovation, 2015, 3, 46-62.	6.1	14
57	Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Science of the Total Environment, 2015, 523, 178-190.	8.0	55
58	Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma, 2015, 257-258, 29-39.	5.1	133
59	A cloud based tool for knowledge exchange on local scale flood risk. Journal of Environmental Management, 2015, 161, 38-50.	7.8	18
60	High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England. Hydrology and Earth System Sciences, 2014, 18, 3429-3448.	4.9	103
61	Review of the <scp>A</scp> nnual <scp>P</scp> hosphorus <scp>L</scp> oss <scp>E</scp> stimator tool – a new model for estimating phosphorus losses at the field scale. Soil Use and Management, 2014, 30, 337-341.	4.9	8
62	Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma, 2014, 221-222, 11-19.	5.1	111
63	A Meta-Analysis of Organic and Inorganic Phosphorus in Organic Fertilizers, Soils, and Water: Implications for Water Quality. Critical Reviews in Environmental Science and Technology, 2014, 44, 2172-2202.	12.8	79
64	Developing Demonstration Test Catchments as a platform for transdisciplinary land management research in England and Wales. Environmental Sciences: Processes and Impacts, 2014, 16, 1618-1628.	3.5	58
65	Temporal dynamics between cattle in-stream presence and suspended solids in a headwater catchment. Environmental Sciences: Processes and Impacts, 2014, 16, 1570.	3.5	15
66	High frequency variability of environmental drivers determining benthic community dynamics in headwater streams. Environmental Sciences: Processes and Impacts, 2014, 16, 1629-1636.	3.5	14
67	Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environmental Science & Technology, 2014, 48, 8417-8419.	10.0	161
68	Phosphorus in soils and its transfer to water: from fineâ€scale soil processes to models and solutions in landscapes and catchments. Soil Use and Management, 2013, 29, 1-5.	4.9	12
69	Microbial biomass phosphorus contributions to phosphorus solubility in riparian vegetated buffer strip soils. Biology and Fertility of Soils, 2013, 49, 1237-1241.	4.3	15
70	Role of legacy phosphorus in improving global phosphorus-use efficiency. Environmental Development, 2013, 8, 147-148.	4.1	41
71	Designing Grass Cultivars for Droughts and Floods. , 2013, , 171-179.		4
72	Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use and Management, 2013, 29, 187-198.	4.9	12

#	Article	IF	CITATIONS
73	Estimating phosphorus delivery from land to water in headwater catchments using a fuzzy decision tree approach. Soil Use and Management, 2013, 29, 175-186.	4.9	8
74	Policy, practice and decision making for zoonotic disease management: Water and Cryptosporidium. Environment International, 2012, 40, 70-78.	10.0	12
75	Determining E. coli burden on pasture in a headwater catchment: Combined field and modelling approach. Environment International, 2012, 43, 6-12.	10.0	14
76	Comparing empirical models for sediment and phosphorus transfer from soils to water at field and catchment scale under data uncertainty. European Journal of Soil Science, 2012, 63, 211-223.	3.9	23
77	Recovering Phosphorus from Soil: A Root Solution?. Environmental Science & Technology, 2012, 46, 1977-1978.	10.0	116
78	Phosphorus Retention and Remobilization in Vegetated Buffer Strips: A Review. Journal of Environmental Quality, 2012, 41, 389-399.	2.0	120
79	Scaling up the phosphorus signal from soil hillslopes to headwater catchments. Freshwater Biology, 2012, 57, 7-25.	2.4	58
80	The Effects of Climate Change on the Mobilization of Diffuse Substances from Agricultural Systems. Advances in Agronomy, 2012, , 41-77.	5.2	13
81	Uncertainties in the governance of animal disease: an interdisciplinary framework for analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2023-2034.	4.0	25
82	Using artificial fluorescent particles as tracers of livestock wastes within an agricultural catchment. Science of the Total Environment, 2011, 409, 1095-1103.	8.0	6
83	Towards a Holistic Classification of Diffuse Agricultural Water Pollution from Intensively Managed Grasslands on Heavy Soils. Advances in Agronomy, 2010, 105, 83-115.	5.2	39
84	High Temporal Resolution Monitoring of Multiple Pollutant Responses in Drainage from an Intensively Managed Grassland Catchment Caused by a Summer Storm. Water, Air, and Soil Pollution, 2010, 205, 377-393.	2.4	25
85	Integrating water and agricultural management under climate change. Science of the Total Environment, 2010, 408, 5619-5622.	8.0	12
86	A â€~culture' change in catchment microbiology?. Hydrological Processes, 2010, 24, 2973-2976.	2.6	10
87	Phosphorus Solubilization and Potential Transfer to Surface Waters from the Soil Microbial Biomass Following Drying–Rewetting and Freezing–Thawing. Advances in Agronomy, 2010, 106, 1-35.	5.2	115
88	Ensemble evaluation of hydrological model hypotheses. Water Resources Research, 2010, 46, .	4.2	83
89	Re-shaping models of E. coli population dynamics in livestock faeces: Increased bacterial risk to humans?. Environment International, 2010, 36, 1-7.	10.0	41
90	Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands. Water Research, 2010, 44, 1701-1712.	11.3	40

#	Article	IF	CITATIONS
91	Assessing multiple novel tracers to improve the understanding of the contribution of agricultural farm waste to diffuse water pollution. Journal of Environmental Monitoring, 2010, 12, 1159.	2.1	11
92	Assessing catchment-scale erosion and yields of suspended solids from improved temperate grassland. Journal of Environmental Monitoring, 2010, 12, 731.	2.1	63
93	Interactions Among Agricultural Production and Other Ecosystem Services Delivered from European Temperate Grassland Systems. Advances in Agronomy, 2010, 109, 117-154.	5.2	62
94	Mitigating Diffuse Phosphorus Transfer from Agriculture According to Cost and Efficiency. Journal of Environmental Quality, 2009, 38, 2012-2022.	2.0	37
95	The wavelet packet transform: A technique for investigating temporal variation of river water solutes. Journal of Hydrology, 2009, 379, 1-19.	5.4	28
96	Effects of soil drying and rate of re-wetting on concentrations and forms of phosphorus in leachate. Biology and Fertility of Soils, 2009, 45, 635-643.	4.3	73
97	The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services. Land Use Policy, 2009, 26, S187-S197.	5.6	167
98	Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture. Environmental Health Perspectives, 2009, 117, 508-514.	6.0	193
99	Uncertainties in Data and Models to Describe Event Dynamics of Agricultural Sediment and Phosphorus Transfer. Journal of Environmental Quality, 2009, 38, 1137-1148.	2.0	75
100	Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry, 2008, 40, 302-311.	8.8	299
101	Stream water chemistry and quality along an upland–lowland rural land-use continuum, south west England. Journal of Hydrology, 2008, 350, 215-231.	5.4	47
102	Rethinking the Contribution of Drained and Undrained Grasslands to Sedimentâ€Related Water Quality Problems. Journal of Environmental Quality, 2008, 37, 906-914.	2.0	62
103	Application of Flow Fieldâ€Flow Fractionation and Laser Sizing to Characterize Soil Colloids in Drained and Undrained Lysimeters. Journal of Environmental Quality, 2008, 37, 1656-1660.	2.0	7
104	The Impacts of Grazing Animals on the Quality of Soils, Vegetation, and Surface Waters in Intensively Managed Grasslands. Advances in Agronomy, 2007, 94, 237-280.	5.2	265
105	Controls on Catchment-Scale Patterns of Phosphorus in Soil, Streambed Sediment, and Stream Water. Journal of Environmental Quality, 2007, 36, 694-708.	2.0	37
106	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: tracing sediment and organic matter. Hydrological Processes, 2007, 21, 417-422.	2.6	35
107	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands:colloid and sediment characterization methods. Hydrological Processes, 2007, 21, 275-279.	2.6	14
108	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: erosion. Hydrological Processes, 2007, 21, 135-139.	2.6	28

#	Article	IF	CITATIONS
109	Genetically modified hydrographs: what can grass genetics do for temperate catchment hydrology?. Hydrological Processes, 2007, 21, 2217-2221.	2.6	24
110	A perspective on the role of lowland, agricultural grasslands in contributing to erosion and water quality problems in the UK. Earth Surface Processes and Landforms, 2007, 32, 964-967.	2.5	23
111	Effects of tillage and reseeding on phosphorus transfers from grassland. Soil Use and Management, 2007, 23, 71-81.	4.9	46
112	Agriculture, phosphorus and eutrophication: a European perspective. Soil Use and Management, 2007, 23, 1-4.	4.9	229
113	Land use scenarios for England and Wales: evaluation of management options to support ?good ecological status? in surface freshwaters. Soil Use and Management, 2007, 23, 176-194.	4.9	60
114	Integration for sustainable catchment management. Science of the Total Environment, 2007, 373, 591-602.	8.0	82
115	Preferential Attachment of Escherichia coli to Different Particle Size Fractions of an Agricultural Grassland Soil. Water, Air, and Soil Pollution, 2007, 185, 369-375.	2.4	81
116	Differential E. coli Die-Off Patterns Associated with Agricultural Matrices. Environmental Science & Technology, 2006, 40, 5710-5716.	10.0	61
117	The Influence of Sample Preparation on Observed Particle Size Distributions for Contrasting Soil Suspensions using Flow Field-Flow Fractionation. Environmental Chemistry, 2006, 3, 184.	1.5	40
118	Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: an overview of key issues. Hydrological Processes, 2006, 20, 4407-4413.	2.6	73
119	The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 2005, 344, 5-14.	8.0	244
120	Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment, 2005, 344, 27-36.	8.0	180
121	Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study. Science of the Total Environment, 2005, 344, 83-106.	8.0	86
122	Linking landscape sources of phosphorus and sediment to ecological impacts in surface waters. Science of the Total Environment, 2005, 344, 1-3.	8.0	23
123	Transfer of Escherichia coli to Water from Drained and Undrained Grassland after Grazing. Journal of Environmental Quality, 2005, 34, 918-925.	2.0	66
124	Spatial Variability of Soil Phosphorus in Relation to the Topographic Index and Critical Source Areas. Journal of Environmental Quality, 2005, 34, 2263-2277.	2.0	104
125	Assessing the Potential for Pathogen Transfer from Grassland Soils to Surface Waters. Advances in Agronomy, 2005, 85, 125-180.	5.2	62
126	Comparison of Centrifugation and Filtration Techniques for the Size Fractionation of Colloidal Material in Soil Suspensions Using Sedimentation Field-Flow Fractionation. Environmental Science & Technology, 2005, 39, 1731-1735.	10.0	123

#	Article	IF	CITATIONS
127	Evaluating diffuse and point phosphorus contributions to river transfers at different scales in the Taw catchment, Devon, UK. Journal of Hydrology, 2005, 304, 118-138.	5.4	62
128	Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry, 2003, 35, 187-189.	8.8	143
129	Environmental applications of flow field-flow fractionation (FIFFF). TrAC - Trends in Analytical Chemistry, 2003, 22, 615-633.	11.4	79
130	Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 449-469.	4.0	617
131	Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biology and Biochemistry, 2002, 34, 27-35.	8.8	211
132	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 59, 269-284.	2.2	160
133	Phosphorus solubilization in rewetted soils. Nature, 2001, 411, 258-258.	27.8	352
134	Potential for Preferential Pathways of Phosphorus Transport. Journal of Environmental Quality, 2000, 29, 97-105.	2.0	212
135	Terminology for Phosphorus Transfer. Journal of Environmental Quality, 2000, 29, 10-15.	2.0	222
136	Phosphorus Forms and Concentrations in Leachate under Four Grassland Soil Types. Soil Science Society of America Journal, 2000, 64, 1090-1099.	2.2	148
137	Transfer of Phosphorus from Agricultural Soil. Advances in Agronomy, 1999, 66, 195-249.	5.2	236
138	Hydrological Factors for Phosphorus Transfer from Agricultural Soils. Advances in Agronomy, 1999, , 153-178.	5.2	72
139	Preconcentration and Separation of Trace Phosphorus Compounds in Soil Leachate. Journal of Environmental Quality, 1999, 28, 1497-1504.	2.0	59
140	Phosphorus Leaching Under Cut Grassland. Water Science and Technology, 1999, 39, 63-67.	2.5	8
141	Phosphorus budgets for two contrasting grassland farming systems in the UK. Soil Use and Management, 1998, 14, 160-167.	4.9	132
142	Forms of phosphorus transfer in hydrological pathways from soil under grazed grassland. European Journal of Soil Science, 1998, 49, 65-72.	3.9	252
143	Determination of Total Dissolved Phosphorus in Soil Solutions. Journal of Environmental Quality, 1997, 26, 410-415.	2.0	151
144	Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution. Water Research, 1997, 31, 439-448.	11.3	145

#	Article	IF	CITATIONS
145	Soil derived phosphorus in surface runoff from grazed grassland lysimeters. Water Research, 1997, 31, 140-148.	11.3	88
146	Short-Term Changes in the Molybdate Reactive Phosphorus of Stored Soil Waters. Journal of Environmental Quality, 1995, 24, 1133-1140.	2.0	53
147	Determination of gaseous and particulate selenium over a rural grassland in the U.K Atmospheric Environment, 1994, 28, 3655-3663.	4.1	16
148	Geographical and seasonal variation in deposition of selenium to vegetation. Environmental Science & Technology, 1993, 27, 2878-2884.	10.0	8
149	Phosphorus Mobility in the Landscape. Agronomy, 0, , 941-979.	0.2	9
150	Soil phosphorus over a period of agricultural change in Scotland. European Journal of Soil Science, 0, , .	3.9	1
151	Grazing and topography control nutrient pools in low Arctic soils of southwest Greenland. European Journal of Soil Science, 0, , .	3.9	Ο