James D Brien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3195254/publications.pdf

Version: 2024-02-01

69 papers 3,886 citations

32 h-index 59 g-index

80 all docs 80 docs citations

80 times ranked 5592 citing authors

#	Article	IF	CITATIONS
1	Balanced T and B cell responses are required for immune protection against Powassan virus in virus-like particle vaccination. Cell Reports, 2022, 38, 110388.	6.4	9
2	Mission, Organization, and Future Direction of the Serological Sciences Network for COVID-19 (SeroNet) Epidemiologic Cohort Studies. Open Forum Infectious Diseases, 2022, 9, .	0.9	5
3	The Serological Sciences Network (SeroNet) for COVID-19: Depth and Breadth of Serology Assays and Plans for Assay Harmonization. MSphere, 2022, 7, .	2.9	16
4	Titration and neutralizing antibody quantification by focus forming assay for Powassan virus. STAR Protocols, 2022, 3, 101473.	1.2	0
5	Pre-existing T Cell Memory against Zika Virus. Journal of Virology, 2021, 95, .	3.4	11
6	Tamoxifen as a Zika Virus Therapeutic. FASEB Journal, 2021, 35, .	0.5	1
7	A Dengue Virus Serotype 1 mRNA-LNP Vaccine Elicits Protective Immune Responses. Journal of Virology, 2021, 95, .	3.4	37
8	Prior Heterologous Flavivirus Exposure Results in Reduced Pathogenesis in a Mouse Model of Zika Virus Infection. Journal of Virology, 2021, 95, e0057321.	3.4	6
9	Obesity Enhances Disease Severity in Female Mice Following West Nile Virus Infection. Frontiers in Immunology, 2021, 12, 739025.	4.8	11
10	Selective estrogen receptor modulator, tamoxifen, inhibits Zika virus infection. Journal of Medical Virology, 2021, 93, 6155-6162.	5.0	5
11	Single-Dose Intranasal Administration of AdCOVID Elicits Systemic and Mucosal Immunity against SARS-CoV-2 and Fully Protects Mice from Lethal Challenge. Vaccines, 2021, 9, 881.	4.4	86
12	The Ability of Zika virus Intravenous Immunoglobulin to Protect From or Enhance Zika Virus Disease. Frontiers in Immunology, 2021, 12, 717425.	4.8	6
13	Function Is More Reliable than Quantity to Follow Up the Humoral Response to the Receptor-Binding Domain of SARS-CoV-2-Spike Protein after Natural Infection or COVID-19 Vaccination. Viruses, 2021, 13, 1972.	3.3	22
14	Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respiratory Medicine, the, 2021, 9, 1365-1376.	10.7	119
15	Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation. Journal of Leukocyte Biology, 2021, 110, 1225-1239.	3.3	4
16	Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. IScience, 2021, , 103553.	4.1	5
17	Generation and characterization of an <i>IL2RG</i> knockout Syrian hamster model for XSCID and HAdV-C6 infection in immunocompromised patients. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	9
18	Human iPSC-Derived Neuronal Cells From CTBP1-Mutated Patients Reveal Altered Expression of Neurodevelopmental Gene Networks. Frontiers in Neuroscience, 2020, 14, 562292.	2.8	6

#	Article	IF	CITATIONS
19	Heterotypic immunity against vaccinia virus in an HLA-B*07:02 transgenic mousepox infection model. Scientific Reports, 2020, 10, 13167.	3.3	9
20	Current Flavivirus Research Important for Vaccine Development. Vaccines, 2020, 8, 477.	4.4	2
21	Effective control of early Zika virus replication by Dengue immunity is associated to the length of time between the 2 infections but not mediated by antibodies. PLoS Neglected Tropical Diseases, 2020, 14, e0008285.	3.0	17
22	T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. Journal of Virology, 2020, 94, .	3.4	49
23	The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model. Archives of Virology, 2020, 165, 671-681.	2.1	13
24	Immunogenicity and Efficacy of a Recombinant Human Adenovirus Type 5 Vaccine against Zika Virus. Vaccines, 2020, 8, 170.	4.4	14
25	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	30.7	61
26	SARS-CoV-2 spike protein promotes IL-6 trans-signaling by activation of angiotensin II receptor signaling in epithelial cells. PLoS Pathogens, 2020, 16, e1009128.	4.7	157
27	mRNA induced expression of human angiotensin-converting enzyme 2 in mice for the study of the adaptive immune response to severe acute respiratory syndrome coronavirus 2. PLoS Pathogens, 2020, 16, e1009163.	4.7	24
28	Diagnostic differentiation of Zika and dengue virus exposure by analyzing T cell receptor sequences from peripheral blood of infected HLA-A2 transgenic mice. PLoS Neglected Tropical Diseases, 2020, 14, e0008896.	3.0	1
29	Title is missing!. , 2020, 16, e1009163.		0
30	Title is missing!. , 2020, 16, e1009163.		0
31	Title is missing!. , 2020, 16, e1009163.		0
32	Title is missing!. , 2020, 16, e1009163.		0
33	The Temporal Role of Cytokines in Flavivirus Protection and Pathogenesis. Current Clinical Microbiology Reports, 2019, 6, 25-33.	3.4	3
34	Identification of Protective CD8 T Cell Responses in a Mouse Model of Zika Virus Infection. Frontiers in Immunology, 2019, $10,1678.$	4.8	42
35	Isolation and Quantification of Zika Virus from Multiple Organs in a Mouse. Journal of Visualized Experiments, 2019, , .	0.3	15
36	Time elapsed between Zika and dengue virus infections affects antibody and T cell responses. Nature Communications, 2019, 10, 4316.	12.8	31

#	Article	IF	Citations
37	Mouse Models of Heterologous Flavivirus Immunity: A Role for Cross-Reactive T Cells. Frontiers in Immunology, 2019, 10, 1045.	4.8	17
38	Preliminary aggregate safety and immunogenicity results from three trials of a purified inactivated Zika virus vaccine candidate: phase 1, randomised, double-blind, placebo-controlled clinical trials. Lancet, The, 2018, 391, 563-571.	13.7	165
39	CD4+T cells mediate protection against Zika associated severe disease in a mouse model of infection. PLoS Pathogens, 2018, 14, e1007237.	4.7	77
40	Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nature Communications, $2017, 8, 15674$.	12.8	178
41	Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host and Microbe, 2015, 18, 86-95.	11.0	116
42	Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.	3.4	38
43	Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection. MBio, 2015, 6, e01316-15.	4.1	40
44	Propagation, Quantification, Detection, and Storage of West Nile Virus. Current Protocols in Microbiology, 2013, 31, 15D.3.1-15D.3.18.	6.5	104
45	Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS Pathogens, 2013, 9, e1003312.	4.7	228
46	Chikungunya Virus Infection Results in Higher and Persistent Viral Replication in Aged Rhesus Macaques Due to Defects in Anti-Viral Immunity. PLoS Neglected Tropical Diseases, 2013, 7, e2343.	3.0	95
47	Protection by Immunoglobulin Dual-Affinity Retargeting Antibodies against Dengue Virus. Journal of Virology, 2013, 87, 7747-7753.	3.4	17
48	Functional Analysis of Antibodies against Dengue Virus Type 4 Reveals Strain-Dependent Epitope Exposure That Impacts Neutralization and Protection. Journal of Virology, 2013, 87, 8826-8842.	3.4	73
49	Cytomegalovirus Infection Impairs Immune Responses and Accentuates T-cell Pool Changes Observed in Mice with Aging. PLoS Pathogens, 2012, 8, e1002849.	4.7	121
50	Repeated In Vivo Stimulation of T and B Cell Responses in Old Mice Generates Protective Immunity against Lethal West Nile Virus Encephalitis. Journal of Immunology, 2011, 186, 3882-3891.	0.8	37
51	The Interferon-Inducible Gene viperin Restricts West Nile Virus Pathogenesis. Journal of Virology, 2011, 85, 11557-11566.	3.4	130
52	Interferon Regulatory Factor-1 (IRF-1) Shapes Both Innate and CD8+ T Cell Immune Responses against West Nile Virus Infection. PLoS Pathogens, 2011, 7, e1002230.	4.7	75
53	A Temporal Role Of Type I Interferon Signaling in CD8+ T Cell Maturation during Acute West Nile Virus Infection. PLoS Pathogens, 2011, 7, e1002407.	4.7	95
54	In-Depth Analysis of the Antibody Response of Individuals Exposed to Primary Dengue Virus Infection. PLoS Neglected Tropical Diseases, 2011, 5, e1188.	3.0	184

#	Article	IF	Citations
55	Genotype-Specific Neutralization and Protection by Antibodies against Dengue Virus Type 3. Journal of Virology, 2010, 84, 10630-10643.	3.4	132
56	The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1. PLoS Pathogens, 2010, 6, e1000823.	4.7	192
57	Structure and Function Analysis of Therapeutic Monoclonal Antibodies against Dengue Virus Type 2. Journal of Virology, 2010, 84, 9227-9239.	3.4	189
58	Key role of T cell defects in age-related vulnerability to West Nile virus. Journal of Experimental Medicine, 2009, 206, 2735-2745.	8.5	139
59	West Nile Virus Capsid Degradation of Claudin Proteins Disrupts Epithelial Barrier Function. Journal of Virology, 2009, 83, 6125-6134.	3.4	55
60	Inflation and Long-Term Maintenance of CD8 T Cells Responding to a Latent Herpesvirus Depend upon Establishment of Latency and Presence of Viral Antigens. Journal of Immunology, 2009, 183, 8077-8087.	0.8	43
61	West Nile Virus-Specific CD4 T Cells Exhibit Direct Antiviral Cytokine Secretion and Cytotoxicity and Are Sufficient for Antiviral Protection. Journal of Immunology, 2008, 181, 8568-8575.	0.8	143
62	Age-Related Dysregulation of CD8+ T Cell Memory Specific for a Persistent Virus Is Independent of Viral Replication. Journal of Immunology, 2008, 180, 4848-4857.	0.8	39
63	Cutting Edge: TLR Ligands Increase TCR Triggering by Slowing Peptide-MHC Class I Decay Rates. Journal of Immunology, 2008, 181, 5199-5203.	0.8	15
64	Sultam Thiourea Inhibition of West Nile Virus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2642-2645.	3.2	10
65	Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. European Journal of Immunology, 2007, 37, 1855-1863.	2.9	120
66	Activation of Virus-Specific CD8+ T Cells by Lipopolysaccharide-Induced IL-12 and IL-18. Journal of Immunology, 2004, 173, 6873-6881.	0.8	87
67	Protease inhibitors strike a blow to KS progression. Trends in Microbiology, 2002, 10, 214.	7.7	1
68	Antiviral T-Cell-Independent Type 2 Antibody Responses Induced in Vivo in the Absence of T and NK Cells. Virology, 2001, 280, 160-168.	2.4	53
69	The Role of CD40-CD154 Interaction in Antiviral T Cell-Independent IgG Responses. Journal of Immunology, 2000, 164, 5877-5882.	0.8	26