Janet D Scheel

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/3194589/publications.pdf
Version: 2024-02-01

\square

2
Small-scale universality in fluid turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10961-10965.

Resolving the fine-scale structure in turbulent Rayleighâ€"BÃ@nard convection. New Journal of Physics,
2013, 15, 113063.
2.9
7.1

92
Turbulent superstructures in Rayleigh-BÃ@nard convection. Nature Communications, 2018, 9, 2118.
12.8

134
Resolving the fine-scale structure in turbulent Rayleighâ $€^{\text {" } B A ̃ ® n a r d ~ c o n v e c t i o n . ~ N e w ~ J o u r n a l ~ o f ~ P h y s i c s, ~}$
$2013,15,113063$.

4 Global and local statistics in turbulent convection at low Prandtl numbers. Journal of Fluid Mechanics, 2016, 802, 147-173.

Classical $1 / 3$ scaling of convection holds up to $\mathrm{Ra}=10\langle$ sup $\rangle 15</$ sup \rangle. Proceedings of the National
Academy of Sciences of the United States of America, 2020, 117, 7594-7598.
3.4

69
\square Academy Sciences of the United States of America, 2020, 117, $7594-7598$.
7.1

Local boundary layer scales in turbulent Rayleighâ€"BÃ@nard convection. Journal of Fluid Mechanics,
2014, 758, 344-373.
3.4

Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number
convection flows. Physical Review Fluids, 2017, 2, .

Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9530-9535.

Transitional boundary layers in low-Prandtl-number convection. Physical Review Fluids, 2016, 1, .
2.5

35
$9 \quad$ Transitional boundary layers in low-Prandtl-number convection. Physical Review Fluids, 2016, 1, . 35

Supergranule aggregation for constant heat flux-driven turbulent convection. Physical Review
Research, 2021, 3, .
3.6

20

```
Extreme dissipation event due to plume collision in a turbulent convection cell. Physical Review E, 2016, 94, 043104.
```

Reply to He et al.: The dependence of heat transport law on aspect ratio is still unclear. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30024-30024.

