Janet D Scheel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3194589/publications.pdf Version: 2024-02-01

IANET D SCHEEL

#	Article	IF	CITATIONS
1	Turbulent superstructures in Rayleigh-Bénard convection. Nature Communications, 2018, 9, 2118.	12.8	134
2	Small-scale universality in fluid turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10961-10965.	7.1	92
3	Resolving the fine-scale structure in turbulent Rayleigh–Bénard convection. New Journal of Physics, 2013, 15, 113063.	2.9	83
4	Global and local statistics in turbulent convection at low Prandtl numbers. Journal of Fluid Mechanics, 2016, 802, 147-173.	3.4	69
5	Classical 1/3 scaling of convection holds up to Ra = 10 ¹⁵ . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7594-7598.	7.1	61
6	Local boundary layer scales in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2014, 758, 344-373.	3.4	58
7	Predicting transition ranges to fully turbulent viscous boundary layers in low Prandtl number convection flows. Physical Review Fluids, 2017, 2, .	2.5	51
8	Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids. Proceedings of the United States of America, 2015, 112, 9530-9535.	7.1	35
9	Transitional boundary layers in low-Prandtl-number convection. Physical Review Fluids, 2016, 1, .	2.5	35
10	Supergranule aggregation for constant heat flux-driven turbulent convection. Physical Review Research, 2021, 3, .	3.6	20
11	Extreme dissipation event due to plume collision in a turbulent convection cell. Physical Review E, 2016, 94, 043104.	2.1	7
12	Reply to He et al.: The dependence of heat transport law on aspect ratio is still unclear. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30024-30024.	7.1	0