Michael K L Trainer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3194049/publications.pdf

Version: 2024-02-01

194 papers 20,807 citations

79 h-index 132 g-index

212 all docs 212 docs citations

times ranked

212

10014 citing authors

#	Article	IF	CITATIONS
1	Understanding the Paths of Surface Ozone Abatement in the Los Angeles Basin. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	10
2	Identifying Volatile Chemical Product Tracer Compounds in U.S. Cities. Environmental Science & Emp; Technology, 2021, 55, 188-199.	4.6	60
3	Observations Confirm that Volatile Chemical Products Are a Major Source of Petrochemical Emissions in U.S. Cities. Environmental Science & Emp; Technology, 2021, 55, 4332-4343.	4.6	57
4	Volatile organic compound emissions from solvent- and water-borne coatings $\hat{a} \in \text{``compositional}$ differences and tracer compound identifications. Atmospheric Chemistry and Physics, 2021, 21, 6005-6022.	1.9	24
5	Quantifying Methane and Ozone Precursor Emissions from Oil and Gas Production Regions across the Contiguous US. Environmental Science & Technology, 2021, 55, 9129-9139.	4.6	23
6	Volatile chemical product emissions enhance ozone and modulate urban chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	103
7	Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035203.	1.2	16
8	Assessment of Updated Fuelâ€Based Emissions Inventories Over the Contiguous United States Using TROPOMI NO∢sub>2 Retrievals. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035484.	1.2	18
9	Inversion Estimates of Lognormally Distributed Methane Emission Rates From the Haynesvilleâ€Bossier Oil and Gas Production Region Using Airborne Measurements. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3520-3531.	1.2	18
10	Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 2018, 359, 760-764.	6.0	716
11	Development of a Fuel-Based Oil and Gas Inventory of Nitrogen Oxides Emissions. Environmental Science & Emp; Technology, 2018, 52, 10175-10185.	4.6	19
12	Impact of high-resolution a priori profiles on satellite-based formaldehyde retrievals. Atmospheric Chemistry and Physics, 2018, 18, 7639-7655.	1.9	2
13	Quantifying Methane and Ethane Emissions to the Atmosphere From Central and Western U.S. Oil and Natural Gas Production Regions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7725-7740.	1.2	74
14	Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory. Environmental Science & Environmental	4.6	64
15	Limited impact of sulfate-driven chemistry on black carbon aerosol aging in power plant plumes. AIMS Environmental Science, 2018, 5, 195-215.	0.7	1
16	Transition from high- to low-NOx control of night-time oxidation in the southeastern US. Nature Geoscience, 2017, 10, 490-495.	5.4	56
17	Topâ€down estimate of methane emissions in California using a mesoscale inverse modeling technique: The San Joaquin Valley. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3686-3699.	1.2	26
18	Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013. Atmospheric Measurement Techniques, 2016, 9, 3063-3093.	1.2	58

#	Article	IF	Citations
19	Modeling the weekly cycle of NO _x and CO emissions and their impacts on O ₃ in the Los Angelesâ€South Coast Air Basin during the CalNex 2010 field campaign. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1340-1360.	1.2	51
20	Analysis of longâ€term observations of NO _x and CO in megacities and application to constraining emissions inventories. Geophysical Research Letters, 2016, 43, 9920-9930.	1.5	69
21	Influence of oil and gas emissions on summertime ozone in the Colorado Northern Front Range. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8712-8729.	1.2	86
22	Impact of turbulent mixing on isoprene chemistry. Geophysical Research Letters, 2016, 43, 7701-7708.	1.5	19
23	HONO emission and production determined from airborne measurements over the Southeast U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 9237-9250.	1.2	46
24	Quantifying atmospheric methane emissions from oil and natural gas production in the Bakken shale region of North Dakota. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6101-6111.	1.2	99
25	Topâ€down estimate of methane emissions in California using a mesoscale inverse modeling technique: The South Coast Air Basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6698-6711.	1.2	38
26	Weakening of the weekend ozone effect over California's South Coast Air Basin. Geophysical Research Letters, 2015, 42, 9457-9464.	1.5	32
27	Understanding high wintertime ozone pollution events in an oil- and natural gas-producing region of the western US. Atmospheric Chemistry and Physics, 2015, 15, 411-429.	1.9	154
28	Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2119-2139.	1.2	164
29	Airborne measurements of the atmospheric emissions from a fuel ethanol refinery. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4385-4397.	1.2	16
30	Reduced emissions of <scp>CO₂</scp> , <scp>NOx</scp> , and <scp>SO₂</scp> from U.S. power plants owing to switch from coal to natural gas with combined cycle technology. Earth's Future, 2014, 2, 75-82.	2.4	219
31	High winter ozone pollution from carbonyl photolysis in an oil and gas basin. Nature, 2014, 514, 351-354.	13.7	265
32	Transport of NO <i>_x</i> in East Asia identified by satellite and in situ measurements and Lagrangian particle dispersion model simulations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2574-2596.	1.2	51
33	A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denverâ€Julesburg Basin. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6836-6852.	1.2	257
34	Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophysical Research Letters, 2013, 40, 4393-4397.	1.5	414
35	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
36	Reply to comment on "Hydrocarbon emissions characterization in the Colorado Front Range-A pilot study―by Michael A. Levi. Journal of Geophysical Research D: Atmospheres, 2013, 118, 236-242.	1.2	8

3

#	Article	IF	Citations
37	Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NO _x and CO ₂ and their impacts. Atmospheric Chemistry and Physics, 2013, 13, 3661-3677.	1.9	142
38	Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX. Atmospheric Chemistry and Physics, 2013, 13, 11317-11337.	1.9	51
39	Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5893-5911.	1.2	115
40	Nitrous oxide (N ₂ O) emissions from California based on 2010 CalNex airborne measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2809-2820.	1.2	24
41	Quantifying sources of methane using light alkanes in the Los Angeles basin, California. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4974-4990.	1.2	167
42	Photochemical aging of volatile organic compounds in the Los Angeles basin: Weekdayâ€weekend effect. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5018-5028.	1.2	54
43	Hydrocarbon emissions characterization in the Colorado Front Range: A pilot study. Journal of Geophysical Research, 2012, 117, .	3.3	359
44	Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophysical Research Letters, 2012, 39, .	1.5	189
45	Airborne and groundâ€based observations of a weekend effect in ozone, precursors, and oxidation products in the California South Coast Air Basin. Journal of Geophysical Research, 2012, 117, .	3.3	97
46	A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. Journal of Geophysical Research, 2012, 117, .	3.3	195
47	A new inversion method to calculate emission inventories without a prior at mesoscale: Application to the anthropogenic CO ₂ emission from Houston, Texas. Journal of Geophysical Research, 2012, 117, .	3.3	44
48	Observations of ozone transport from the free troposphere to the Los Angeles basin. Journal of Geophysical Research, 2012, 117, .	3. 3	38
49	Effects of NO _x control and plume mixing on nighttime chemical processing of plumes from coalâ€fired power plants. Journal of Geophysical Research, 2012, 117, .	3.3	20
50	Influence of fairâ€weather cumulus clouds on isoprene chemistry. Journal of Geophysical Research, 2012, 117, .	3.3	28
51	Evolution of aerosol properties impacting visibility and direct climate forcing in an ammoniaâ€rich urban environment. Journal of Geophysical Research, 2012, 117, .	3.3	54
52	Ozone and alkyl nitrate formation from the Deepwater Horizon oil spill atmospheric emissions. Journal of Geophysical Research, 2012, 117, .	3.3	16
53	Ammonia sources in the California South Coast Air Basin and their impact on ammonium nitrate formation. Geophysical Research Letters, 2012, 39, .	1.5	110
54	Multiyear trends in volatile organic compounds in Los Angeles, California: Five decades of decreasing emissions. Journal of Geophysical Research, 2012, 117, .	3.3	183

#	Article	IF	CITATIONS
55	Airborne observations of methane emissions from rice cultivation in the Sacramento Valley of California. Journal of Geophysical Research, 2012, 117, .	3.3	50
56	Budgets for nocturnal VOC oxidation by nitrate radicals aloft during the 2006 Texas Air Quality Study. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	63
57	Measurement of western U.S. baseline ozone from the surface to the tropopause and assessment of downwind impact regions. Journal of Geophysical Research, 2011, 116, .	3.3	71
58	Top-down estimate of anthropogenic emission inventories and their interannual variability in Houston using a mesoscale inverse modeling technique. Journal of Geophysical Research, 2011, 116, .	3.3	73
59	Evaluations of NO _x and highly reactive VOC emission inventories in Texas and their implications for ozone plume simulations during the Texas Air Quality Study 2006. Atmospheric Chemistry and Physics, 2011, 11, 11361-11386.	1.9	85
60	Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmospheric Chemistry and Physics, 2011, 11, 2127-2143.	1.9	119
61	Modeling ozone plumes observed downwind of New York City over the North Atlantic Ocean during the ICARTT field campaign. Atmospheric Chemistry and Physics, 2011, 11, 7375-7397.	1.9	22
62	Emissions and photochemistry of oxygenated VOCs in urban plumes in the Northeastern United States. Atmospheric Chemistry and Physics, 2011, 11, 7081-7096.	1.9	41
63	The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. Journal of Geophysical Research, 2011, 116, .	3.3	99
64	Dependence of daily peak O3 concentrations near Houston, Texas on environmental factors: Wind speed, temperature, and boundary-layer depth. Atmospheric Environment, 2011, 45, 162-173.	1.9	60
65	Influence of low spatial resolution a priori data on tropospheric NO ₂ satellite retrievals. Atmospheric Measurement Techniques, 2011, 4, 1805-1820.	1.2	57
66	Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature, 2010, 463, 344-348.	13.7	397
67	Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories. Journal of Geophysical Research, 2010, 115 , .	3.3	89
68	A topâ€down analysis of emissions from selected Texas power plants during TexAQS 2000 and 2006. Journal of Geophysical Research, 2010, 115, .	3.3	60
69	Characterization of NO _{<i>x</i>} , SO ₂ , ethene, and propene from industrial emission sources in Houston, Texas. Journal of Geophysical Research, 2010, 115, .	3.3	44
70	NO $<$ sub $>$ 2 $<$ /sub $>$ columns in the western United States observed from space and simulated by a regional chemistry model and their implications for NO $<$ sub $>$ x $<$ /sub $>$ emissions. Journal of Geophysical Research, 2009, 114, .	3.3	146
71	Reactive uptake coefficients for N ₂ O ₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations. Journal of Geophysical Research, 2009, 114, .	3.3	124
72	Relationship between photochemical ozone production and NO $<$ sub $>$ x $<$ /sub $>$ oxidation in Houston, Texas. Journal of Geophysical Research, 2009, 114, .	3.3	36

#	Article	IF	CITATIONS
73	Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol. Atmospheric Chemistry and Physics, 2009, 9, 3027-3042.	1.9	128
74	Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks. Atmospheric Chemistry and Physics, 2009, 9, 3075-3093.	1.9	33
75	Effect of biomass burning on marine stratocumulus clouds off the California coast. Atmospheric Chemistry and Physics, 2009, 9, 8841-8856.	1.9	96
76	A study of organic nitrates formation in an urban plume using a Master Chemical Mechanism. Atmospheric Environment, 2008, 42, 5771-5786.	1.9	32
77	Sources of particulate matter in the northeastern United States in summer: 2. Evolution of chemical and microphysical properties. Journal of Geophysical Research, 2008, 113, .	3.3	48
78	Sources of particulate matter in the northeastern United States in summer: 1. Direct emissions and secondary formation of organic matter in urban plumes. Journal of Geophysical Research, 2008, 113, .	3.3	173
79	Highâ€resolution emissions of CO ₂ from power generation in the USA. Journal of Geophysical Research, 2008, 113, .	3.3	42
80	Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions. Geophysical Research Letters, 2008, 35, .	1.5	388
81	Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere. Geophysical Research Letters, 2008, 35, .	1.5	60
82	Mixing between a stratospheric intrusion and a biomass burning plume. Atmospheric Chemistry and Physics, 2007, 7, 4229-4235.	1.9	42
83	Determination of urban volatile organic compound emission ratios and comparison with an emissions database. Journal of Geophysical Research, 2007, 112, .	3.3	254
84	Evidence for a recurring eastern North America upper tropospheric ozone maximum during summer. Journal of Geophysical Research, 2007, 112 , .	3.3	81
85	Vertical profiles in NO ₃ and N ₂ O ₅ measured from an aircraft: Results from the NOAA Pâ€3 and surface platforms during the New England Air Quality Study 2004. Journal of Geophysical Research, 2007, 112, .	3.3	75
86	Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	165
87	Effects of changing power plant NOxemissions on ozone in the eastern United States: Proof of concept. Journal of Geophysical Research, 2006, 111, .	3.3	226
88	Biomass burning and anthropogenic sources of CO over New England in the summer 2004. Journal of Geophysical Research, 2006, 111 , .	3.3	83
89	Reactive nitrogen transport and photochemistry in urban plumes over the North Atlantic Ocean. Journal of Geophysical Research, 2006, 111 , .	3.3	83
90	Large upper tropospheric ozone enhancements above midlatitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network. Journal of Geophysical Research, 2006, 111, .	3.3	113

#	ARTICLE	IF	CITATIONS
91	International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe-Overview of the 2004 summer field study. Journal of Geophysical Research, 2006, 111 , .	3.3	222
92	Nocturnal odd-oxygen budget and its implications for ozone loss in the lower troposphere. Geophysical Research Letters, 2006, 33, .	1.5	75
93	Satellite-observed U.S. power plant NOxemission reductions and their impact on air quality. Geophysical Research Letters, 2006, 33, .	1.5	219
94	Variability in Nocturnal Nitrogen Oxide Processing and Its Role in Regional Air Quality. Science, 2006, 311, 67-70.	6.0	345
95	The Accuracy of Solar Irradiance Calculations Used in Mesoscale Numerical Weather Prediction. Monthly Weather Review, 2005, 133, 783-792.	0.5	71
96	A Bad Air Day in Houston. Bulletin of the American Meteorological Society, 2005, 86, 657-670.	1.7	191
97	An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research, 2005, 110 , .	3.3	103
98	Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign. Journal of Geophysical Research, 2004, 109, .	3.3	60
99	A case study of transpacific warm conveyor belt transport: Influence of merging airstreams on trace gas import to North America. Journal of Geophysical Research, 2004, 109, .	3.3	169
100	A case study of stratosphere-troposphere exchange during the 1996 North Atlantic Regional Experiment. Journal of Geophysical Research, 2004, 109, .	3.3	5
101	Fraction and composition of NOytransported in air masses lofted from the North American continental boundary layer. Journal of Geophysical Research, 2004, 109, .	3.3	37
102	Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) and Pacific Exploration of Asian Continental Emission (PEACE) experiments: An overview of the 2002 winter and spring intensives. Journal of Geophysical Research, 2004, 109, .	3.3	97
103	Forecasting for a Lagrangian aircraft campaign. Atmospheric Chemistry and Physics, 2004, 4, 1113-1124.	1.9	21
104	Urban-rural contrasts in mixing height and cloudiness over Nashville in 1999. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	65
105	Comparing MM5 radiative fluxes with observations gathered during the 1995 and 1999 Nashville southern oxidants studies. Journal of Geophysical Research, 2003, 108, .	3.3	40
106	Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	126
107	Particle growth in urban and industrial plumes in Texas. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	109
108	Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere. Journal of Geophysical Research, 2003, 108, .	3.3	179

#	Article	IF	Citations
109	Nitrogen oxides in the nocturnal boundary layer: Simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	105
110	Effect of petrochemical industrial emissions of reactive alkenes and NOxon tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research, 2003, 108, .	3.3	263
111	Variability in ammonium nitrate formation and nitric acid depletion with altitude and location over California. Journal of Geophysical Research, 2003, 108, .	3.3	84
112	Fossil-fueled power plants as a source of atmospheric carbon monoxide. Journal of Environmental Monitoring, 2003, 5, 35-39.	2.1	28
113	Export of NOyfrom the North American boundary layer during 1996 and 1997 North Atlantic Regional Experiments. Journal of Geophysical Research, 2002, 107, ACH 11-1-ACH 11-13.	3.3	58
114	Decadal change in carbon monoxide to nitrogen oxide ratio in U.S. vehicular emissions. Journal of Geophysical Research, 2002, 107, ACH 5-1.	3.3	88
115	Comparisons of box model calculations and measurements of formaldehyde from the 1997 North Atlantic Regional Experiment. Journal of Geophysical Research, 2002, 107, ACH 3-1.	3.3	42
116	Trace gas composition of midlatitude cyclones over the western North Atlantic Ocean: A conceptual model. Journal of Geophysical Research, 2002, 107, ACH 1-1.	3.3	72
117	Trace gas composition of midlatitude cyclones over the western North Atlantic Ocean: A seasonal comparison of O3and CO. Journal of Geophysical Research, 2002, 107, ACH 2-1.	3.3	50
118	Particle growth in the plumes of coal-fired power plants. Journal of Geophysical Research, 2002, 107, AAC 9-1.	3.3	85
119	Modeling cloud effects on hydrogen peroxide and methylhydroperoxide in the marine atmosphere. Journal of Geophysical Research, 2002, 107, AAC 7-1.	3.3	15
120	Alkyl nitrate measurements during STERAO 1996 and NARE 1997: Intercomparison and survey of results. Journal of Geophysical Research, 2001, 106, 23043-23053.	3.3	15
121	Trace gas signatures of the airstreams within North Atlantic cyclones: Case studies from the North Atlantic Regional Experiment (NARE '97) aircraft intensive. Journal of Geophysical Research, 2001, 106, 5437-5456.	3.3	121
122	Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study. Journal of Geophysical Research, 2001, 106, 8035-8046.	3.3	93
123	Application of a sequential reaction model to PANs and aldehyde measurements in two urban areas. Geophysical Research Letters, 2001, 28, 4583-4586.	1.5	45
124	Inter-annual variability of summertime CO concentrations in the Northern Hemisphere explained by boreal forest fires in North America and Russia. Geophysical Research Letters, 2001, 28, 4575-4578.	1.5	109
125	Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science, 2001, 292, 719-723.	6.0	258
126	Review of observation-based analysis of the regional factors influencing ozone concentrations. Atmospheric Environment, 2000, 34, 2045-2061.	1.9	129

#	Article	IF	Citations
127	Mixing of anthropogenic pollution with stratospheric ozone: A case study from the North Atlantic wintertime troposphere. Journal of Geophysical Research, 2000, 105, 24363-24374.	3.3	56
128	The Influence of Canadian Forest Fires on Pollutant Concentrations in the United States. Science, 2000, 288, 324-328.	6.0	266
129	Airborne measurements of isoprene, CO, and anthropogenic hydrocarbons and their implications. Journal of Geophysical Research, 2000, 105, 9091-9105.	3.3	71
130	An overview of the Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm. Journal of Geophysical Research, 2000, 105, 10023-10045.	3.3	98
131	Photochemical modeling of OH levels during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research, 1999, 104, 16041-16052.	3.3	30
132	Measurements of reactive nitrogen and ozone to 5-km altitude in June 1990 over the southeastern United States. Journal of Geophysical Research, 1998, 103, 8369-8388.	3.3	19
133	A modeling study of tropospheric species during the North Atlantic Regional Experiment (NARE). Journal of Geophysical Research, 1998, 103, 13593-13613.	3.3	3
134	Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region. Journal of Geophysical Research, 1998, 103, 13357-13376.	3.3	231
135	Photochemical ozone production in the rural southeastern United States during the 1990 Rural Oxidants in the Southern Environment (ROSE) program. Journal of Geophysical Research, 1998, 103, 22491-22508.	3.3	74
136	Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. Journal of Geophysical Research, 1998, 103, 22519-22544.	3.3	141
137	Meteorological conditions during the 1995 Southern Oxidants Study Nashville/Middle Tennessee Field Intensive. Journal of Geophysical Research, 1998, 103, 22225-22243.	3.3	38
138	Internal consistency tests for evaluation of measurements of anthropogenic hydrocarbons in the troposphere. Journal of Geophysical Research, 1998, 103, 22339-22359.	3.3	91
139	Hydrogen peroxide dry deposition lifetime determined from observed loss rates in a power plant plume. Journal of Geophysical Research, 1998, 103, 22617-22628.	3.3	17
140	Emissions lifetimes and ozone formation in power plant plumes. Journal of Geophysical Research, 1998, 103, 22569-22583.	3.3	192
141	Measurements of PAN, PPN, and MPAN made during the 1994 and 1995 Nashville Intensives of the Southern Oxidant Study: Implications for regional ozone production from biogenic hydrocarbons. Journal of Geophysical Research, 1998, 103, 22473-22490.	3.3	106
142	An overview of the airborne activities during the Southern Oxidants Study (SOS) 1995 Nashville/Middle Tennessee Ozone Study. Journal of Geophysical Research, 1998, 103, 22245-22259.	3.3	44
143	Nocturnal Wind Structure and Plume Growth Rates Due to Inertial Oscillations. Journal of Applied Meteorology and Climatology, 1997, 36, 1050-1063.	1.7	23
144	Regional ozone from biogenic hydrocarbons deduced from airborne measurements of PAN, PPN, and MPAN. Geophysical Research Letters, 1997, 24, 1099-1102.	1.5	114

#	Article	IF	CITATIONS
145	Local meteorological features affecting chemical measurements at a North Atlantic coastal site. Journal of Geophysical Research, 1996, 101, 28935-28946.	3.3	22
146	Mesoscale meteorology of the New England coast, Gulf of Maine, and Nova Scotia: Overview. Journal of Geophysical Research, 1996, 101, 28893-28901.	3.3	55
147	North Atlantic Regional Experiment 1993 Summer Intensive: Foreword. Journal of Geophysical Research, 1996, 101, 28869-28875.	3.3	47
148	Radon 222 simulations as a test of a three-dimensional regional transport model. Journal of Geophysical Research, 1996, 101, 29165-29177.	3.3	18
149	Meteorological mechanisms for transporting O3over the western North Atlantic Ocean: A case study for August 24-29, 1993. Journal of Geophysical Research, 1996, 101, 29213-29227.	3.3	63
150	Transport and processing of O3and O3precursors over the North Atlantic: An overview of the 1993 North Atlantic Regional Experiment (NARE) summer intensive. Journal of Geophysical Research, 1996, 101, 28877-28891.	3.3	74
151	Trace gas and aerosol measurements using aircraft data from the North Atlantic Regional Experiment (NARE 1993). Journal of Geophysical Research, 1996, 101, 29013-29027.	3.3	34
152	Summer and spring ozone profiles over the North Atlantic from ozonesonde measurements. Journal of Geophysical Research, 1996, 101, 29179-29200.	3.3	96
153	Episodic removal of NOyspecies from the marine boundary layer over the North Atlantic. Journal of Geophysical Research, 1996, 101, 28947-28960.	3.3	54
154	Factors influencing the concentration of gas phase hydrogen peroxide during the summer at Kinterbish, Alabama. Journal of Geophysical Research, 1995, 100, 22841.	3.3	24
155	Regional photochemical measurement and modeling studies conference San Diego, California 8–12 November 1993. Atmospheric Environment, 1995, 29, 2885-2886.	1.9	1
156	Factors influencing the concentration of gas phase hydrogen peroxide during the summer at Niwot Ridge, Colorado. Journal of Geophysical Research, 1995, 100, 22831.	3.3	40
157	Measurements of 3-methyl furan, methyl vinyl ketone, and methacrolein at a rural forested site in the southeastern United States. Journal of Geophysical Research, 1995, 100, 11393.	3.3	74
158	Measurements of hydrocarbons, oxygenated hydrocarbons, carbon monoxide, and nitrogen oxides in an urban basin in Colorado: Implications for emission inventories. Journal of Geophysical Research, 1995, 100, 22771.	3.3	74
159	Regional ozone and urban plumes in the southeastern United States: Birmingham, A case study. Journal of Geophysical Research, 1995, 100, 18823.	3.3	102
160	Evaluation of ozone precursor source types using principal component analysis of ambient air measurements in rural Alabama. Journal of Geophysical Research, 1995, 100, 22853.	3.3	38
161	Intercomparison of tropospheric OH and ancillary trace gas measurements at Fritz Peak Observatory, Colorado. Journal of Geophysical Research, 1994, 99, 18605.	3.3	80
162	Parameterization of subgrid scale convective cloud transport in a mesoscale regional chemistry model. Journal of Geophysical Research, 1994, 99, 25615.	3.3	20

#	Article	IF	CITATIONS
163	Export of North American Ozone Pollution to the North Atlantic Ocean. Science, 1993, 259, 1436-1439.	6.0	284
164	Correlation of ozone with NO _y in photochemically aged air. Journal of Geophysical Research, 1993, 98, 2917-2925.	3.3	336
165	Isoprene and its oxidation products, methyl vinyl ketone and methacrolein, in the rural troposphere. Journal of Geophysical Research, 1993, 98, 1101-1111.	3.3	169
166	The total reactive oxidized nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America. Journal of Geophysical Research, 1993, 98, 2927-2939.	3.3	165
167	An improved chemical amplifier technique for peroxy radical measurements. Journal of Geophysical Research, 1993, 98, 2897-2909.	3.3	69
168	A study of the photochemistry and ozone budget during the Mauna Loa Observatory Photochemistry Experiment. Journal of Geophysical Research, 1992, 97, 10463-10471.	3.3	133
169	Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochemical Cycles, 1992, 6, 389-430.	1.9	788
170	Assessment of pollutant emission inventories by principal component analysis of ambient air measurements. Geophysical Research Letters, 1992, 19, 1009-1012.	1.5	51
171	Observations and modeling of the reactive nitrogen photochemistry at a rural site. Journal of Geophysical Research, 1991, 96, 3045-3063.	3.3	127
172	Carbon monoxide concentrations and their relation to concentrations of total reactive oxidized nitrogen at two rural U.S. sites. Journal of Geophysical Research, 1991, 96, 9309-9320.	3.3	130
173	A regional model study of the ozone budget in the eastern United States. Journal of Geophysical Research, 1991, 96, 10809-10845.	3.3	116
174	Decrease of summer tropospheric ozone concentrations in Antarctica. Nature, 1991, 351, 726-729.	13.7	80
175	Systematic variations in the concentration of NO _{<i>x</i>} (NO Plus NO ₂) at Niwot Ridge, Colorado. Journal of Geophysical Research, 1990, 95, 1817-1836.	3.3	112
176	On the indirect determination of atmospheric OH radical concentrations from reactive hydrocarbon measurements. Journal of Geophysical Research, 1990, 95, 7493-7500.	3.3	74
177	Aircraft measurements of NO \langle sub \langle i \rangle \langle i \rangle \langle sub \rangle over the eastern Pacific and continental United States and implications for ozone production. Journal of Geophysical Research, 1990, 95, 10205-10233.	3.3	77
178	Measurements of NO _{<i>x</i>} over the eastern Pacific Ocean and southwestern United States during the spring 1984 NASA GTE aircraft program. Journal of Geophysical Research, 1989, 94, 5043-5067.	3.3	33
179	Responses of the tropospheric ozone and odd hydrogen radicals to column ozone change. Journal of Atmospheric Chemistry, 1988, 6, 221-233.	1.4	91
180	On the nonlinearity of the tropospheric ozone production. Journal of Geophysical Research, 1988, 93, 15879-15888.	3.3	398

#	Article	IF	Citations
181	Ozone production in the rural troposphere and the implications for regional and global ozone distributions. Journal of Geophysical Research, 1987, 92, 4191-4207.	3.3	858
182	Impact of natural hydrocarbons on hydroxyl and peroxy radicals at a remote site. Journal of Geophysical Research, 1987, 92, 11879-11894.	3.3	227
183	Measurements of tropospheric OH concentrations: A comparison of field data with model predictions. Journal of Atmospheric Chemistry, 1987, 5, 185-216.	1.4	116
184	Models and observations of the impact of natural hydrocarbons on rural ozone. Nature, 1987, 329, 705-707.	13.7	479
185	Measurements of the NO _{<i>x</i>} â€O ₃ photostationary state at Niwot Ridge, Colorado. Journal of Geophysical Research, 1986, 91, 5361-5370.	3.3	106
186	Background ozone and anthropogenic ozone enhancement at niwot ridge, Colorado. Journal of Atmospheric Chemistry, 1986, 4, 63-80.	1.4	35
187	Background Ozone and Anthropogenic Ozone Enhancement at Niwot Ridge, Colorado., 1986,, 261-278.		0
188	Measurements of stratospheric HO2 and NO2 by matrix isolation and ESR spectroscopy. Journal of Atmospheric Chemistry, 1984, 2, 191-202.	1.4	24
189	A study of ozone in the Colorado mountains. Journal of Atmospheric Chemistry, 1983, 1, 87-105.	1.4	98
190	ESR spectrum of ClO (2Î3/2) isolated in a CO2 matrix. Journal of Chemical Physics, 1983, 79, 3648-3653.	1.2	9
191	Measurements of free radicals in the atmosphere by matrix isolation and electron paramagnetic resonance. Pure and Applied Geophysics, 1978, 116, 530-536.	0.8	44
192	Measurements of Free Radicals in the Atmosphere by Matrix Isolation and Electron Paramagnetic Resonance. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 16-19.	0.9	15
193	Nachweis von RO2- und NO2-Radikalen in der TroposphÃre mit Hilfe von Matrixisolationstechnik und EPR-Spektroskopie. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1978, 82, 1146-1146.	0.9	2
194	Inelastic collisions of metastable helium on helium at impact energies between 1000 and 5000 eV. Journal of Physics B: Atomic and Molecular Physics, 1977, 10, 3229-3244.	1.6	5