
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3194029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of 3-O-Sulfation of Heparan Sulfate During Transition from the NaÃ ⁻ ve to the Primed State in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2022, 2303, 443-452.	0.9	1
2	Analysis of 3′-Phosphoadenosine 5′-Phosphosulfate Transporters: Transporter Activity Assay, Real-Time Reverse Transcription Polymerase Chain Reaction, and. Methods in Molecular Biology, 2022, 2303, 675-685.	0.9	0
3	Turkeys possess diverse Siaα2-3Gal glycans that facilitate their dual susceptibility to avian influenza viruses isolated from ducks and chickens. Virus Research, 2022, 315, 198771.	2.2	6
4	Comprehensive and Comparative Structural Glycome Analysis in Mouse Epiblast-like Cells. Methods in Molecular Biology, 2022, 2490, 179-193.	0.9	1
5	Disaccharide-tag for highly sensitive identification of O-GlcNAc-modified proteins in mammalian cells. PLoS ONE, 2022, 17, e0267804.	2.5	1
6	Dermatan sulphate promotes neuronal differentiation in mouse and human stem cells. Journal of Biochemistry, 2021, 169, 55-64.	1.7	11
7	A defined glycosylation regulatory network modulates total glycome dynamics during pluripotency state transition. Scientific Reports, 2021, 11, 1276.	3.3	9
8	Drosophila melanogaster in Glycobiology: Their Mutants Are Excellent Models for Human Diseases. , 2021, , 1-35.		0
9	Transient Induction and Characterization of Mouse Epiblast-Like Cells from Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2021, , 1.	0.9	0
10	Site-specific O-GlcNAcylation of Psme3 maintains mouse stem cell pluripotency by impairing P-body homeostasis. Cell Reports, 2021, 36, 109361.	6.4	8
11	Dermatan-4-O-Sulfotransferase-1 Contributes to the Undifferentiated State of Mouse Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 733964.	3.7	4
12	Sulfated glycans containing NeuAcα2-3Gal facilitate the propagation of human H1N1 influenza A viruses in eggs. Virology, 2021, 562, 29-39.	2.4	7
13	Mucin-Type O-Glycosylation in the Drosophila Nervous System. Frontiers in Neuroanatomy, 2021, 15, 767126.	1.7	2
14	Correlative Light-Electron Microscopy of Neurons and Brains in Liquid. Microscopy and Microanalysis, 2021, 27, 5-6.	0.4	0
15	Functional analysis of glycosylation using Drosophila melanogaster. Glycoconjugate Journal, 2020, 37, 1-14.	2.7	6
16	Mucin-type <i>O</i> -glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis. Journal of Cell Science, 2020, 133, .	2.0	6
17	E190V substitution of H6 hemagglutinin is one of key factors for binding to sulfated sialylated glycan receptor and infection to chickens. Microbiology and Immunology, 2020, 64, 304-312.	1.4	10
18	Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochemical and Biophysical Research Communications, 2019, 518, 506-512.	2.1	15

#	Article	IF	CITATIONS
19	Cell Profiling Based on Sugarâ€Chain–Cell Binding Interaction and Its Application to Typing and Quality Verification of Cells. ChemBioChem, 2019, 20, 1810-1816.	2.6	3
20	Glycans in Infection and Immunity. , 2019, , 227-257.		0
21	Technologies to Elucidate Functions of Glycans. , 2019, , 87-124.		Ο
22	Glycan Function in Development and its Regulation. , 2019, , 191-207.		0
23	The Functions of <i>O</i> -GlcNAc in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2019, 31, E69-E75.	0.1	1
24	The Functions of <i>O</i> -GlcNAc in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2019, 31, J69-J75.	0.1	0
25	Glucuronylated core 1 glycans are required for precise localization of neuromuscular junctions and normal formation of basement membranes on Drosophila muscles. Developmental Biology, 2018, 436, 108-124.	2.0	14
26	O-GlcNAc on PKCζ Inhibits the FGF4-PKCζ-MEK-ERK1/2 Pathway via Inhibition of PKCζ Phosphorylation in Mouse Embryonic Stem Cells. Stem Cell Reports, 2018, 10, 272-286.	4.8	22
27	CLEM of Neurons, Tissues and Biofilms immersed in Liquid using The Atmospheric Scanning Electron Microscope (ASEM): Dual Gold-Labeling. Microscopy and Microanalysis, 2018, 24, 340-341.	0.4	Ο
28	Glycans in stem cell regulation: from <i>Drosophila</i> tissue stem cells to mammalian pluripotent stem cells. FEBS Letters, 2018, 592, 3773-3790.	2.8	24
29	Functions of Mucin-Type <i>O</i> -Glycans in the Nervous System. Trends in Glycoscience and Glycotechnology, 2018, 30, J77-J82.	0.1	Ο
30	Functions of Mucin-Type <i>O</i> -Glycans in the Nervous System. Trends in Glycoscience and Glycotechnology, 2018, 30, E103-E108.	0.1	0
31	Short stop mediates axonal compartmentalization of mucin-type core 1 glycans. Scientific Reports, 2017, 7, 41455.	3.3	14
32	Correlative light–electron microscopy in liquid usingÂan inverted SEM (ASEM). Methods in Cell Biology, 2017, 140, 187-213.	1.1	2
33	Glycans define the stemness of naÃ ⁻ ve and primed pluripotent stem cells. Glycoconjugate Journal, 2017, 34, 737-747.	2.7	8
34	The Atmospheric Scanning Electron Microscope (ASEM) observes the axonal compartmentalization and microtubule formation in neurons Microscopy and Microanalysis, 2017, 23, 1298-1299.	0.4	0
35	Strong radioprotective FGF1 signaling down-regulates proliferative and metastatic capabilities of the angiosarcoma cell line, ISOS-1, through the dual inhibition of EGFR and VEGFR pathways. Clinical and Translational Radiation Oncology, 2017, 7, 83-90.	1.7	3
36	Atmospheric Pressure Plasma Irradiation on Embryonic Stem Cells: Signals and Differentiation. Plasma Medicine, 2017, 7, 215-225.	0.6	5

SHOKO NISHIHARA

#	Article	IF	CITATIONS
37	Glycan Function on Stem Cells: <i>Drosophila</i> and Mammalian Stem Cells. Kagaku To Seibutsu, 2017, 55, 750-758.	0.0	0
38	Atmospheric-pressure plasma-irradiation inhibits mouse embryonic stem cell differentiation to mesoderm and endoderm but promotes ectoderm differentiation. Journal Physics D: Applied Physics, 2016, 49, 165401.	2.8	11
39	O-GlcNAc is required for the survival of primed pluripotent stem cells and their reversion to the naìve state. Biochemical and Biophysical Research Communications, 2016, 480, 655-661.	2.1	14
40	Mucin-type core 1 glycans regulate the localization of neuromuscular junctions and establishment of muscle cell architecture in Drosophila. Developmental Biology, 2016, 412, 114-127.	2.0	18
41	Phenotypeâ€based clustering of glycosylationâ€related genes by <scp>RNA</scp> iâ€mediated gene silencing. Genes To Cells, 2015, 20, 521-542.	1.2	25
42	Preparation of a polyclonal antibody that recognizes a unique galactoseβ1-4fucose disaccharide epitope. Carbohydrate Research, 2015, 412, 50-55.	2.3	4
43	Reduction of T antigen causes loss of hematopoietic progenitors in Drosophila through the inhibition of filopodial extensions from the hematopoietic niche. Developmental Biology, 2015, 401, 206-219.	2.0	20
44	Identification of β1,3-galactosyltransferases responsible for biosynthesis of insect complex-type N-glycans containing a T-antigen unit in the honeybee. Glycoconjugate Journal, 2015, 32, 141-151.	2.7	10
45	Members of the Nucleotide-Sugar Transporter Family and Their Functions. , 2015, , 1253-1265.		0
46	Functional Analysis of Glycans Glycan Using Drosophila Drosophila Mutants Mutant and RNAi. , 2015, , 891-899.		0
47	Glycan Functions and Signals in Embryonic Stem Cells. , 2015, , 1465-1473.		0
48	A chicken influenza virus recognizes fucosylated α2,3 sialoglycan receptors on the epithelial cells lining upper respiratory tracts of chickens. Virology, 2014, 456-457, 131-138.	2.4	35
49	Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy, 2014, 143, 52-66.	1.9	38
50	Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature. Journal Physics D: Applied Physics, 2014, 47, 445402.	2.8	11
51	Frequent glycan structure mining of influenza virus data revealed a sulfated glycan motif that increased viral infection. Bioinformatics, 2014, 30, 706-711.	4.1	18
52	Immuno-Electron Microscopy of Primary Cell Cultures from Genetically Modified Animals in Liquid by Atmospheric Scanning Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 469-483.	0.4	25
53	The Atmospheric Scanning Electron Microscope (ASEM) Observes Axonal Segmentation and Synaptic Induction in Solution. Microscopy and Microanalysis, 2014, 20, 972-973.	0.4	0
54	Solute Carrier Family 35 (CMP-Sialic Acid Transporter), Member A1 (SLC35A1). , 2014, , 1369-1377.		2

#	Article	IF	CITATIONS
55	Self-Renewal of NaÃ⁻ve State Mouse Embryonic Stem Cells: Role of LacdiNAc in LIF/STAT3 Signaling. Stem Cells and Cancer Stem Cells, 2014, , 41-49.	0.1	0
56	Adenosine 3′-Phospho 5′-Phosphosulfate Transporter 1,2 (PAPST1,2) (SLC35B2,3). , 2014, , 1379-1391.		0
57	Function of Heparan Sulfate in Pluripotent Stem Cells. Trends in Glycoscience and Glycotechnology, 2014, 26, 149-157.	0.1	0
58	UDP-N-Acetylglucosamine/UDP-Glucose/GDP-Mannose Transporter (HFRC1) (SLC35D2). , 2014, , 1413-1421.		0
59	Sulfation of keratan sulfate proteoglycan reduces radiationâ€induced apoptosis in human Burkitt's lymphoma cell lines. FEBS Letters, 2013, 587, 231-237.	2.8	18
60	The transition of mouse pluripotent stem cells from the naÃ ⁻ ve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochemical and Biophysical Research Communications, 2013, 430, 1175-1181.	2.1	21
61	O-sulfate groups of heparin are critical for inhibition of ecotropic murine leukemia virus infection by heparin. Virology, 2012, 424, 56-66.	2.4	9
62	3-O-Sulfated Heparan Sulfate Recognized by the Antibody HS4C3 Contribute to the Differentiation of Mouse Embryonic Stem Cells via Fas Signaling. PLoS ONE, 2012, 7, e43440.	2.5	43
63	Gene Silencing in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2012, 836, 53-61.	0.9	0
64	LacdiNAc (GalNAcβ1-4GlcNAc) Contributes to Self-Renewal of Mouse Embryonic Stem Cells by Regulating Leukemia Inhibitory Factor/STAT3 Signaling. Stem Cells, 2011, 29, 641-650.	3.2	55
65	Expression and the role of 3'-phosphoadenosine 5'-phosphosulfate transporters in human colorectal carcinoma. Glycobiology, 2011, 21, 235-246.	2.5	24
66	Increased Apoptosis of Myoblasts in Drosophila Model for the Walker-Warburg Syndrome. PLoS ONE, 2010, 5, e11557.	2.5	40
67	Two Pathways for Importing GDP-fucose into the Endoplasmic Reticulum Lumen Function Redundantly in the O-Fucosylation of Notch in Drosophila. Journal of Biological Chemistry, 2010, 285, 4122-4129.	3.4	47
68	Two Golgi-resident 3′-Phosphoadenosine 5′-Phosphosulfate Transporters Play Distinct Roles in Heparan Sulfate Modifications and Embryonic and Larval Development in Caenorhabditis elegans. Journal of Biological Chemistry, 2010, 285, 24717-24728.	3.4	20
69	Identification of Genes Required for Neural-Specific Glycosylation Using Functional Genomics. PLoS Genetics, 2010, 6, e1001254.	3.5	29
70	Glycosyltransferases and Transporters that Contribute to Proteoglycan Synthesis in Drosophila. Methods in Enzymology, 2010, 480, 323-351.	1.0	21
71	Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 2010, 401, 480-486.	2.1	18
72	The 3′-Phosphoadenosine 5′-Phosphosulfate Transporters, PAPST1 and 2, Contribute to the Maintenance and Differentiation of Mouse Embryonic Stem Cells. PLoS ONE, 2009, 4, e8262.	2.5	46

#	Article	IF	CITATIONS
73	Endoplasmic Reticulum/Golgi Nucleotide Sugar Transporters Contribute to the Cellular Release of UDP-sugar Signaling Molecules. Journal of Biological Chemistry, 2009, 284, 12572-12583.	3.4	63
74	The ortholog of human solute carrier family 35 member B1 (UDPâ€galactose transporterâ€related protein) Tj E in <i>Caenorhabditis elegans</i> . FASEB Journal, 2009, 23, 2215-2225.	ETQq0 0 0 rş 0.5	gBT /Overlock 22
75	Insight into the Regulation of Glycan Synthesis in Drosophila Chaoptin Based on Mass Spectrometry. PLoS ONE, 2009, 4, e5434.	2.5	18
76	The function of glycan structures expressed on embryonic stem cells. Trends in Glycoscience and Glycotechnology, 2009, 21, 207-218.	0.1	1
77	Sequential enzymatic glycosyltransfer reactions on a microfluidic device: Synthesis of a glycosaminoglycan linkage region tetrasaccharide. Lab on A Chip, 2008, 8, 2168.	6.0	16
78	Heparan Sulfate Regulates Self-renewal and Pluripotency of Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 3594-3606.	3.4	99
79	Functional Analysis of Proteoglycan Galactosyltransferase II RNA Interference Mutant Flies. Journal of Biological Chemistry, 2008, 283, 6076-6084.	3.4	20
80	Identification of the Drosophila core 1 Â1,3-galactosyltransferase gene that synthesizes T antigen in the embryonic central nervous system and hemocytes. Glycobiology, 2008, 18, 1094-1104.	2.5	31
81	Nucleotide Sugar Transporter Genes and Their Functional Analysis. , 2008, , 103-107.		0
82	Mice lacking $\hat{I}\pm 1,3$ -fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors. Glycobiology, 2007, 17, 1-9.	2.5	154
83	Drosophila β1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochemical and Biophysical Research Communications, 2007, 354, 522-527.	2.1	21
84	Involvement of Drosophila Sir2-like genes in the regulation of life span. Genes and Genetic Systems, 2006, 81, 341-348.	0.7	27
85	Molecular Cloning and Characterization of a Novel 3′-Phosphoadenosine 5′-Phosphosulfate Transporter, PAPST2. Journal of Biological Chemistry, 2006, 281, 10945-10953.	3.4	67
86	Identification and Characterization of a Novel Drosophila 3â€2-Phosphoadenosine 5â€2-Phosphosulfate Transporter. Journal of Biological Chemistry, 2006, 281, 28508-28517.	3.4	30
87	β4GalT-II is a key regulator of glycosylation of the proteins involved in neuronal development. Biochemical and Biophysical Research Communications, 2005, 333, 131-137.	2.1	24
88	The Subcellular PAPS Synthesis Pathway Responsible for the Sulfation of Proteoglycans: a Comparison between Humans and Drosophila Melanogaster. Trends in Glycoscience and Glycotechnology, 2004, 16, 109-123.	0.1	5
89	Design and Synthesis of Peptide Mimetics of GDP-Fucose: Targeting Inhibitors of Fucosyltransferases. Synlett, 2004, 2004, 0243-0246.	1.8	0
90	Normal Embryonic and Germ Cell Development in Mice Lacking α1,3-Fucosyltransferase IX (Fut9) Which Show Disappearance of Stage-Specific Embryonic Antigen 1. Molecular and Cellular Biology, 2004, 24, 4221-4228.	2.3	66

#	Article	IF	CITATIONS
91	Molecular Cloning and Characterization of a Human Multisubstrate Specific Nucleotide-sugar Transporter Homologous to Drosophila fringe connection. Journal of Biological Chemistry, 2004, 279, 26469-26474.	3.4	61
92	Drosophila Glucosylceramide Synthase. Journal of Biological Chemistry, 2004, 279, 35995-36002.	3.4	86
93	The Twisted Abdomen Phenotype of Drosophila POMT1 and POMT2 Mutants Coincides with Their Heterophilic Protein O-Mannosyltransferase Activity. Journal of Biological Chemistry, 2004, 279, 42638-42647.	3.4	97
94	Approach for functional analysis of glycan using RNA interference. Glycoconjugate Journal, 2004, 21, 63-68.	2.7	14
95	Preface for the Special Issue Entitled "Comparative Glycomics: Challenge to Functional Analysis of Glycans― Trends in Glycoscience and Glycotechnology, 2004, 16, 61-62.	0.1	0
96	Cloning and Characterization of a New Human UDP-N-Acetyl-α-d-galactosamine:PolypeptideN-Acetylgalactosaminyltransferase, Designated pp-GalNAc-T13, That Is Specifically Expressed in Neurons and Synthesizes GalNAc α-Serine/Threonine Antigen. Journal of Biological Chemistry, 2003, 278, 573-584.	3.4	123
97	Lewis Type 1 Antigen Synthase (β3Gal-T5) Is Transcriptionally Regulated by Homeoproteins. Journal of Biological Chemistry, 2003, 278, 36611-36620.	3.4	42
98	Proteoglycan UDP-Galactose:β-Xylose β1,4-Galactosyltransferase I Is Essential for Viability inDrosophila melanogaster. Journal of Biological Chemistry, 2003, 278, 15571-15578.	3.4	43
99	Molecular Cloning and Identification of 3′-Phosphoadenosine 5′-Phosphosulfate Transporter. Journal of Biological Chemistry, 2003, 278, 25958-25963.	3.4	123
100	alpha1,3-Fucosyltransferase IX (Fut9) determines Lewis X expression in brain. Glycobiology, 2003, 13, 445-455.	2.5	72
101	Enzymatic Synthesis of Chondroitin with a Novel Chondroitin Sulfate N-Acetylgalactosaminyltransferase That Transfers N-Acetylgalactosamine to Glucuronic Acid in Initiation and Elongation of Chondroitin Sulfate Synthesis. Journal of Biological Chemistry, 2002, 277, 38189-38196.	3.4	71
102	Fuc-TIX: a versatile Â1,3-fucosyltransferase with a distinct acceptor- and site-specificity profile. Clycobiology, 2002, 12, 361-368.	2.5	18
103	The Evolutionary History of Glycosyltransferase Genes Trends in Glycoscience and Glycotechnology, 2001, 13, 147-155.	0.1	18
104	CD15 Expression in Mature Granulocytes Is Determined by α1,3-Fucosyltransferase IX, but in Promyelocytes and Monocytes by α1,3-Fucosyltransferase IV. Journal of Biological Chemistry, 2001, 276, 16100-16106.	3.4	108
105	A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes. Journal of Biological Chemistry, 2001, 276, 38588-38594.	3.4	26
106	Molecular Cloning and Characterization of UDP-GlcNAc:Lactosylceramide β1,3-N-Acetylglucosaminyltransferase (β3Gn-T5), an Essential Enzyme for the Expression of HNK-1 and Lewis X Epitopes on Glycolipids. Journal of Biological Chemistry, 2001, 276, 22032-22040.	3.4	116
107	Expression of Cutaneous Lymphocyte-Associated Antigen Regulated by a Set of Glycosyltransferases in Human T Cells: Involvement of α1,3-Fucosyltransferase VII and β1,4-Galactosyltransferase I. Journal of Investigative Dermatology, 2000, 115, 299-306.	0.7	36
108	Molecular mechanisms of expression of Lewis b antigen and other Type I Lewis antigens in human colorectal cancer. Glycobiology, 1999, 9, 607-616.	2.5	28

#	Article	IF	CITATIONS
109	Cloning, Expression, and Characterization of a Novel UDP-galactose:Î ² -N-Acetylglucosamine Î ² 1,3-Galactosyltransferase (Î ² 3Gal-T5) Responsible for Synthesis of Type 1 Chain in Colorectal and Pancreatic Epithelia and Tumor Cells Derived Therefrom. Journal of Biological Chemistry, 1999, 274, 12499-12507.	3.4	127
110	Up-regulation of Lewis enzyme (Fuc-TIII) and plasma-type ?1,3Fucosyltransferase (Fuc-TVI) expression determines the augmented expression of sialyl Lewis x antigen in non-small cell lung cancer. , 1999, 83, 70-79.		30
111	α1,3-Fucoslytransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Letters, 1999, 452, 237-242.	2.8	112
112	α1,3-Fucosyltransferase 9 (FUT9; Fuc-TIX) preferentially fucosylates the distal GlcNAc residue of polylactosamine chain while the other four α1,3FUT members preferentially fucosylate the inner GlcNAc residue. FEBS Letters, 1999, 462, 289-294.	2.8	83
113	A novel glycosyltransferase with a polyglutamine repeat; a new candidate for GD1α synthase (ST6GalNAc V)1. FEBS Letters, 1999, 463, 92-96.	2.8	42
114	An immunohistochemical study of β1,4-galactosyltransferase in human skin tissue. Journal of Dermatological Science, 1999, 20, 183-190.	1.9	5
115	Cloning and expression of a human gene encoding an N-acetylgalactosamine-Â2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. Glycobiology, 1999, 9, 1213-1224.	2.5	123
116	Molecular behavior of mutant Lewis enzymes in vivo. Glycobiology, 1999, 9, 373-382.	2.5	33
117	The aberrant expression of Lewis a antigen in intestinal metaplastic cells of gastric mucosa is caused by augmentation of Lewis enzyme expression. Glycoconjugate Journal, 1998, 15, 799-807.	2.7	19
118	Distinct Substrate Specificities of Five Human α-1,3-Fucosyltransferases forin VivoSynthesis of the Sialyl Lewis x and Lewis x Epitopes. Biochemical and Biophysical Research Communications, 1997, 237, 131-137.	2.1	37
119	Wide Variety of Point Mutations in the H Gene of Bombay and Para-Bombay Individuals That Inactivate H Enzyme. Blood, 1997, 90, 839-849.	1.4	66
120	Wide Variety of Point Mutations in the H Gene of Bombay and Para-Bombay Individuals That Inactivate H Enzyme. Blood, 1997, 90, 839-849.	1.4	8
121	Synthesis and characterization of a carbene-generating biotinylated N-acetylglucosamine for photoaffinity labeling of β-(1 → 4)-galactosyltransferase. Carbohydrate Research, 1996, 294, 95-108.	2.3	30
122	Molecular Genetic Analysis of the Human Lewis Histo-blood Group System. Journal of Biological Chemistry, 1996, 271, 9830-9837.	3.4	110
123	Murine monoclonal antibody recognizing human ?(1,3/1,4)fucosyltransferase. Glycoconjugate Journal, 1995, 12, 802-812.	2.7	16
124	Newly established cell lines fromDrosophila larval CNS express neural specific characteristics. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 209-216.	1.5	89
125	Chemical analysis of neurotransmitter candidates in clonal cell lines from Drosophila central nervous system. I. ACh and I-DOPA. Neuroscience Letters, 1994, 174, 85-88.	2.1	18
126	Human α-1,3 Fucosyltransferase (FucT-VI) Gene Is Located at Only 13 kb 3′ to the Lewis Type Fucosyltransferase (FucT-III) Gene on Chromosome 19. Biochemical and Biophysical Research Communications, 1993, 190, 42-46.	2.1	57

SHOKO NISHIHARA

#	Article	IF	CITATIONS
127	α(1,3/1,4)Fucosyltransferase (FucT-III) Gene Is Inactivated by a Single Amino Acid Substitution in Lewis Histo-blood Type Negative Individuals. Biochemical and Biophysical Research Communications, 1993, 196, 624-631.	2.1	70
128	Simple Method for Quantitation of Cellâ€Bound Protein A on <i>Staphylococcus aureus</i> Cells by Means of Hemagglutination with Sheep Erythrocytes Differentially Sensitized with Rabbit Antibody and Its Clinical Application. Microbiology and Immunology, 1989, 33, 155-163.	1.4	4
129	Effect of Temperature on Antibacterial Activity of Lidocaine toStaphylococcus aureusandPseudomonas aeruginosa. Microbiology and Immunology, 1988, 32, 429-434.	1.4	15
130	Simplified Method for Preparation of Concentrated Exoproteins Produced by Staphylococcus aureus Grown on Surface of Cellophane Bag Containing Liquid Medium. Microbiology and Immunology, 1988, 32, 225-228.	1.4	10
131	Luminolâ€Dependent Chemiluminescence in Antibodyâ€Sensitized Neutrophils Stimulated with Protein Aâ€Bearing Staphylococci. Microbiology and Immunology, 1988, 32, 535-540.	1.4	1
132	Ingestion of Bacteria by Antibodyâ€Coated Ehrlich Ascites Tumor Cells Mediated by Protein A. Microbiology and Immunology, 1986, 30, 819-825.	1.4	5
133	Hemagglutination Test with Sheep Erythrocytes Sensitized with Antisera from Several Mammalian Species for the Investigation of Biological Reactivities of Staphylococcal Protein A. Microbiology and Immunology, 1986, 30, 725-730.	1.4	1
134	A note on the A-ring conformation in 2-chloro-1,2-dihydrosantonins Chemical and Pharmaceutical Bulletin, 1985, 33, 400-403.	1.3	3
135	Resistance of a Mutant with an Extremely Low Catalase Production from <i>Staphylococcus aureus</i> Cowanâ€I Strain to the Bactericidal Activity of Human Leukocytes. Microbiology and Immunology, 1985, 29, 151-155.	1.4	0
136	A Rapid and Simple Method for the Purification of Staphylococcal Protein A from the Culture of Extracellularly Protein Aâ€Releasing Mutant. Microbiology and Immunology, 1985, 29, 559-563.	1.4	8
137	Tumoricidal Adsorption of <i>Staphylococcus aureus</i> Organisms on Ehrlich Ascites Tumor Cells Sensitized with Rabbit Antibody. Microbiology and Immunology, 1984, 28, 987-995.	1.4	3
138	Equilibration of 2-chloro-1,2-dihydrosantonin conformers; A theoretical approach using X-ray diffraction and MO calculations Chemical and Pharmaceutical Bulletin, 1983, 31, 4582-4585.	1.3	1