
Friederike Jönsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193836/publications.pdf Version: 2024-02-01

FRIEDERIKE LÄENSSON

#	Article	IF	CITATIONS
1	Specificity of mouse and human Fcgamma receptors and their polymorphic variants for IgG subclasses of different species. European Journal of Immunology, 2022, 52, 753-759.	2.9	15
2	The role of neutrophils in antibody-driven autoimmune cytopenias. International Journal of Biochemistry and Cell Biology, 2022, 147, 106231.	2.8	1
3	The role of IgG subclasses and platelets in experimental anaphylaxis. Journal of Allergy and Clinical Immunology, 2021, 147, 1209-1211.	2.9	5
4	Platelet FcγRIIA-induced serotonin release exacerbates the severity of transfusion-related acute lung injury in mice. Blood Advances, 2021, 5, 4817-4830.	5.2	5
5	Neutrophil-specific gain-of-function mutations in <i>Nlrp3</i> promote development of cryopyrin-associated periodic syndrome. Journal of Experimental Medicine, 2021, 218, .	8.5	29
6	Human IgA binds a diverse array of commensal bacteria. Journal of Experimental Medicine, 2020, 217, .	8.5	65
7	Cofilin1 driven actin dynamics controls migration of thymocytes and is essential for positive selection in the thymus. Journal of Cell Science, 2020, 133, .	2.0	2
8	NMBA-specific memory T cell quantification by CD154 expression in anaphylaxis diagnosis. World Allergy Organization Journal, 2020, 13, 100396.	3.5	0
9	Neutrophil activation by immune complexes in vitro: a model for IgG-mediated anaphylaxis. World Allergy Organization Journal, 2020, 13, 100181.	3.5	0
10	An IgG- and neutrophil-dependent pathway of anaphylaxis induction in humans: results from the multicentric NASA study. World Allergy Organization Journal, 2020, 13, 100180.	3.5	0
11	An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Science Translational Medicine, 2019, 11, .	12.4	99
12	Expression, Role, and Regulation of Neutrophil Fcl ³ Receptors. Frontiers in Immunology, 2019, 10, 1958.	4.8	116
13	Mouse Models and Tools for the in vivo Study of Neutrophils. Frontiers in Immunology, 2019, 10, 3130.	4.8	53
14	Natural variation in the parameters of innate immune cells is preferentially driven by genetic factors. Nature Immunology, 2018, 19, 302-314.	14.5	205
15	MUB40 Binds to Lactoferrin and Stands as a Specific Neutrophil Marker. Cell Chemical Biology, 2018, 25, 483-493.e9.	5.2	13
16	Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Science Immunology, 2018, 3, .	11.9	59
17	Evidence that neutrophils do not promote Echis carinatus venom-induced tissue destruction. Nature Communications, 2018, 9, 2304.	12.8	8
18	IgG subclasses determine pathways of anaphylaxis in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 269-280.e7.	2.9	78

Friederike Jönsson

#	Article	IF	CITATIONS
19	Mucosal mast cells are indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunology, 2017, 10, 481-492.	6.0	44
20	Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. Journal of Experimental Medicine, 2017, 214, 1249-1258.	8.5	84
21	InÂvivo effector functions of high-affinity mouse IgG receptor FcÎ ³ RI in disease and therapy models. Journal of Autoimmunity, 2017, 80, 95-102.	6.5	7
22	Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice. Journal of Allergy and Clinical Immunology, 2017, 139, 1253-1265.e14.	2.9	47
23	Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Science Signaling, 2016, 9, ra126.	3.6	31
24	Mouse and human FcR effector functions. Immunological Reviews, 2015, 268, 25-51.	6.0	412
25	Shaping mycolactone for therapeutic use against inflammatory disorders. Science Translational Medicine, 2015, 7, 289ra85.	12.4	44
26	Contribution of Human FcγRs to Disease with Evidence from Human Polymorphisms and Transgenic Animal Studies. Frontiers in Immunology, 2014, 5, 254.	4.8	104
27	Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. European Journal of Cell Biology, 2014, 93, 252-266.	3.6	52
28	Shifting FcÎ ³ RIIA-ITAM from activation to inhibitory configuration ameliorates arthritis. Journal of Clinical Investigation, 2014, 124, 3945-3959.	8.2	77
29	Neutrophils in local and systemic antibody-dependent inflammatory and anaphylactic reactions. Journal of Leukocyte Biology, 2013, 94, 643-656.	3.3	53
30	The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy. Blood, 2013, 121, 1563-1573.	1.4	120
31	Neutrophils mediate antibody-induced antitumor effects in mice. Blood, 2013, 122, 3160-3164.	1.4	131
32	FcÎ ³ Receptors Inhibit Mouse and Human Basophil Activation. Journal of Immunology, 2012, 189, 2995-3006.	0.8	118
33	Human FcÎ ³ RIIA induces anaphylactic and allergic reactions. Blood, 2012, 119, 2533-2544.	1.4	113
34	A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. European Journal of Immunology, 2012, 42, 2395-2408.	2.9	54
35	Immunological Responses and Actin Dynamics in Macrophages Are Controlled by N-Cofilin but Are Independent from ADF. PLoS ONE, 2012, 7, e36034.	2.5	25
36	Mast Cells and Company. Frontiers in Immunology, 2012, 3, 16.	4.8	65

Friederike JöNSSON

#	Article	IF	CITATIONS
37	Mouse and human neutrophils induce anaphylaxis. Journal of Clinical Investigation, 2011, 121, 1484-1496.	8.2	249
38	Cutting Edge: The Murine High-Affinity IgG Receptor FcÎ ³ RIV Is Sufficient for Autoantibody-Induced Arthritis. Journal of Immunology, 2011, 186, 1899-1903.	0.8	85
39	Human Basophils Express the Glycosylphosphatidylinositol-Anchored Low-Affinity IgG Receptor FcγRIIIB (CD16B). Journal of Immunology, 2009, 182, 2542-2550.	0.8	101