Guoxian Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3193755/publications.pdf

Version: 2024-02-01

236925 276875 2,651 118 25 41 citations h-index g-index papers 121 121 121 2399 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Flexible Cross-Modal Hashing. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 304-314.	11.3	7
2	CMAL: Cost-Effective Multi-Label Active Learning by Querying Subexamples. IEEE Transactions on Knowledge and Data Engineering, 2022, 34, 2091-2105.	5.7	7
3	DeepIDA: Predicting Isoform-Disease Associations by Data Fusion and Deep Neural Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2166-2176.	3.0	8
4	Multiview Multi-Instance Multilabel Active Learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4311-4321.	11.3	8
5	DeepIII: Predicting Isoform-Isoform Interactions by Deep Neural Networks and Data Fusion. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2177-2187.	3.0	3
6	Tissue Specificity Based Isoform Function Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 3048-3059.	3.0	0
7	EpiMC: Detecting Epistatic Interactions Using Multiple Clusterings. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 243-254.	3.0	5
8	ELSSI: parallel SNP–SNP interactions detection by ensemble multi-type detectors. Briefings in Bioinformatics, 2022, 23, .	6.5	5
9	Weighted deep factorizing heterogeneous molecular network for genome-phenome association prediction. Methods, 2022, 205, 18-28.	3.8	2
10	CDPath: Cooperative Driver Pathways Discovery Using Integer Linear Programming and Markov Clustering. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1384-1395.	3.0	11
11	Cross-Species Protein Function Prediction with Asynchronous-Random Walk. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1439-1450.	3.0	8
12	Discovering Multiple Co-Clusterings With Matrix Factorization. IEEE Transactions on Cybernetics, 2021, 51, 3576-3587.	9.5	11
13	Active Multilabel Crowd Consensus. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1448-1459.	11.3	13
14	Cooperative driver pathway discovery via fusion of multi-relational data of genes, miRNAs and pathways. Briefings in Bioinformatics, 2021, 22, 1984-1999.	6.5	8
15	Individuality- and Commonality-Based Multiview Multilabel Learning. IEEE Transactions on Cybernetics, 2021, 51, 1716-1727.	9.5	32
16	Imbalance deep multiâ€instance learning for predicting isoform–isoform interactions. International Journal of Intelligent Systems, 2021, 36, 2797-2824.	5.7	8
17	Multiple clusterings of heterogeneous information networks. Machine Learning, 2021, 110, 1505-1526.	5.4	4
18	DMIL-IsoFun: predicting isoform function using deep multi-instance learning. Bioinformatics, 2021, 37, 4818-4825.	4.1	7

#	Article	IF	Citations
19	IsoDA: Isoform–Disease Association Prediction by Multiomics Data Fusion. Journal of Computational Biology, 2021, 28, 804-819.	1.6	1
20	Costâ€effective multiâ€instance multilabel active learning. International Journal of Intelligent Systems, 2021, 36, 7177-7203.	5.7	3
21	EpiHNet: Detecting Epistasis by Heterogeneous Molecule Network. Methods, 2021, , .	3.8	3
22	Cost-effective Batch-mode Multi-label Active Learning. Neurocomputing, 2021, 463, 355-367.	5.9	14
23	Lung Cancer Subtype Diagnosis by Fusing Image-genomics Data and Hybrid Deep Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	3.0	6
24	Maize Epistasis Detection by Multi-class Quantitative Multifactor Dimensionality Reduction., 2021,,.		1
25	Crowdsourcing with Self-paced Workers. , 2021, , .		2
26	Incomplete Multi-view Multi-label Active Learning. , 2021, , .		0
27	Differentiating isoform functions with collaborative matrix factorization. Bioinformatics, 2020, 36, 1864-1871.	4.1	24
28	NMFGO: Gene Function Prediction via Nonnegative Matrix Factorization with Gene Ontology. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 238-249.	3.0	12
29	Weighted matrix factorization on multi-relational data for LncRNA-disease association prediction. Methods, 2020, 173, 32-43.	3.8	36
30	Isoform function prediction based on bi-random walks on a heterogeneous network. Bioinformatics, 2020, 36, 303-310.	4.1	27
31	Multi-label crowd consensus via joint matrix factorization. Knowledge and Information Systems, 2020, 62, 1341-1369.	3.2	10
32	DualWMDR: Detecting epistatic interaction with dual screening and multifactor dimensionality reduction. Human Mutation, 2020, 41, 719-734.	2.5	15
33	Multi-label zero-shot learning with graph convolutional networks. Neural Networks, 2020, 132, 333-341.	5. 9	22
34	Multi-View Multiple Clusterings Using Deep Matrix Factorization. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34, 6348-6355.	4.9	30
35	Predicting functions of maize proteins using graph convolutional network. BMC Bioinformatics, 2020, 21, 420.	2.6	20
36	Attributed heterogeneous network fusion via collaborative matrix tri-factorization. Information Fusion, 2020, 63, 153-165.	19.1	23

#	Article	IF	CITATIONS
37	A Literature Review of Gene Function Prediction by Modeling Gene Ontology. Frontiers in Genetics, 2020, 11, 400.	2.3	53
38	Feature selection with missing labels based on label compression and local feature correlation. Neurocomputing, 2020, 395, 95-106.	5.9	24
39	Isoform-Disease Association Prediction by Data Fusion. Lecture Notes in Computer Science, 2020, , 44-55.	1.3	2
40	Deep Incomplete Multi-view Multiple Clusterings. , 2020, , .		11
41	Partial Multi-label Learning using Label Compression. , 2020, , .		9
42	Multi-typed Objects Multi-view Multi-instance Multi-label Learning. , 2020, , .		4
43	Weakly-Supervised Multi-view Multi-instance Multi-label Learning. , 2020, , .		5
44	EpIntMC: Detecting Epistatic Interactions Using Multiple Clusterings. Lecture Notes in Computer Science, 2020, , 56-67.	1.3	1
45	Partial Multi-label Learning with Label and Feature Collaboration. Lecture Notes in Computer Science, 2020, , 621-637.	1.3	5
46	Epistasis Detection using Heterogeneous Bio-molecular Network., 2020,,.		1
47	Protein–protein interactions prediction based on ensemble deep neural networks. Neurocomputing, 2019, 324, 10-19.	5.9	102
48	Co-clustering Ensembles based on Multiple Relevance Measures. IEEE Transactions on Knowledge and Data Engineering, 2019, , 1-1.	5.7	14
49	Multiple Independent Subspace Clusterings. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 5353-5360.	4.9	10
50	CoDP: Cooperative Driver Pathways Discovery With Matrix Factorization and Tri-Random Walk. IEEE Access, 2019, 7, 77738-77749.	4.2	4
51	TrioMDR: Detecting SNP interactions in trio families with model-based multifactor dimensionality reduction. Genomics, 2019, 111, 1176-1182.	2.9	2
52	Discovering Multiple Co-Clusterings in Subspaces. , 2019, , 423-431.		12
53	Weighted samples based semi-supervised classification. Applied Soft Computing Journal, 2019, 79, 46-58.	7.2	17
54	Ranking-Based Deep Cross-Modal Hashing. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 4400-4407.	4.9	47

#	Article	IF	Citations
55	Cross-Modal Zero-Shot Hashing. , 2019, , .		7
56	DMIL-III: Isoform-isoform interaction prediction using deep multi-instance learning method., 2019,,.		5
57	CoPath: discovering cooperative driver pathways using greedy mutual exclusivity and bi-clustering. , 2019, , .		1
58	DeepGOA: Predicting Gene Ontology Annotations of Proteins via Graph Convolutional Network., 2019,		14
59	Drug repositioning based on individual bi-random walks on a heterogeneous network. BMC Bioinformatics, 2019, 20, 547.	2.6	8
60	Weakly-supervised Cross-modal Hashing. IEEE Transactions on Big Data, 2019, , 1-1.	6.1	8
61	Gene function prediction based on Gene Ontology Hierarchy Preserving Hashing. Genomics, 2019, 111, 334-342.	2.9	34
62	Selective Matrix Factorization for Multi-relational Data Fusion. Lecture Notes in Computer Science, 2019, , 313-329.	1.3	10
63	Multi-View Multi-Instance Multi-Label Learning Based on Collaborative Matrix Factorization. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33, 5508-5515.	4.9	17
64	ActiveHNE: Active Heterogeneous Network Embedding., 2019,,.		58
65	Multi-View Multiple Clustering. , 2019, , .		22
66	Consistent and Specific Multi-view Relative-Transform Classification. Communications in Computer and Information Science, 2019, , 272-285.	0.5	0
67	Affinity Propagation Clustering Using Centroid-Deviation-Distance Based Similarity. Communications in Computer and Information Science, 2019, , 286-299.	0.5	O
68	Matrix factorization-based data fusion for the prediction of lncRNA–disease associations. Bioinformatics, 2018, 34, 1529-1537.	4.1	157
69	NewGOA: Predicting New GO Annotations of Proteins by Bi-Random Walks on a Hybrid Graph. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1390-1402.	3.0	30
70	Weighted matrix factorization based data fusion for predicting lncRNA-disease associations. , 2018, , .		6
71	Semi-Supervised Multi-Label Feature Selection based on Sparsity Regularization and Dependence Maximization. , 2018, , .		3
72	Feature-Induced Partial Multi-label Learning., 2018,,.		39

#	Article	IF	CITATIONS
73	Multi-label Answer Aggregation Based on Joint Matrix Factorization. , 2018, , .		20
74	Cost Effective Multi-label Active Learning via Querying Subexamples. , 2018, , .		12
75	Multiple Co-clusterings. , 2018, , .		7
76	Predicting protein-protein interactions using high-quality non-interacting pairs. BMC Bioinformatics, 2018, 19, 525.	2.6	20
77	Multi-view Weak-label Learning based on Matrix Completion. , 2018, , 450-458.		21
78	BMC3C: binning metagenomic contigs using codon usage, sequence composition and read coverage. Bioinformatics, 2018, 34, 4172-4179.	4.1	40
79	ClusterMI: Detecting High-Order SNP Interactions Based on Clustering and Mutual Information. International Journal of Molecular Sciences, 2018, 19, 2267.	4.1	18
80	Incomplete Multi-View Weak-Label Learning. , 2018, , .		44
81	Multi-Label Co-Training. , 2018, , .		30
82	Network-aided Bi-Clustering for discovering cancer subtypes. Scientific Reports, 2017, 7, 1046.	3.3	17
83	Semi-supervised multi-label classification using incomplete label information. Neurocomputing, 2017, 260, 192-202.	5.9	34
84	Semi-supervised classification by discriminative regularization. Applied Soft Computing Journal, 2017, 58, 245-255.	7.2	10
85	Semi-supervised classification based on clustering adjusted similarity. International Journal of Computers and Applications, 2017, 39, 210-219.	1.3	1
86	HashGO: hashing gene ontology for protein function prediction. Computational Biology and Chemistry, 2017, 71, 264-273.	2.3	15
87	EnSVMB: Metagenomics Fragments Classification using Ensemble SVM and BLAST. Scientific Reports, 2017, 7, 9440.	3.3	13
88	Weighted-object ensemble clustering: methods and analysis. Knowledge and Information Systems, 2017, 51, 661-689.	3.2	47
89	Semi-Supervised Multi-Label Dimensionality Reduction Based on Dependence Maximization. IEEE Access, 2017, 5, 21927-21940.	4.2	8
90	Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences. International Journal of Molecular Sciences, 2017, 18, 2373.	4.1	38

#	Article	IF	CITATIONS
91	HiSeeker: Detecting High-Order SNP Interactions Based on Pairwise SNP Combinations. Genes, 2017, 8, 153.	2.4	25
92	Protein Function Prediction Using Deep Restricted Boltzmann Machines. BioMed Research International, 2017, 2017, 1-9.	1.9	10
93	NoGOA: predicting noisy GO annotations using evidences and sparse representation. BMC Bioinformatics, 2017, 18, 350.	2.6	13
94	Clustering cancer gene expression data by projective clustering ensemble. PLoS ONE, 2017, 12, e0171429.	2.5	34
95	Multi-Label Classiffation Based on Low Rank Representation for Image Annotation. Remote Sensing, 2017, 9, 109.	4.0	27
96	BRWLDA: bi-random walks for predicting lncRNA-disease associations. Oncotarget, 2017, 8, 60429-60446.	1.8	67
97	Semi-supervised Multi-label Linear Discriminant Analysis. Lecture Notes in Computer Science, 2017, , 688-698.	1.3	5
98	Predicting irrelevant functions of proteins based on dimensionality reduction. Scientia Sinica Informationis, 2017, 47, 1349-1368.	0.4	5
99	Affinity Propagation Clustering Using Path Based Similarity. Algorithms, 2016, 9, 46.	2.1	2
100	NoisyGOA: Noisy GO annotations prediction using taxonomic and semantic similarity. Computational Biology and Chemistry, 2016, 65, 203-211.	2.3	8
101	Interspecies gene function prediction using semantic similarity. BMC Systems Biology, 2016, 10, 121.	3.0	13
102	NegGOA: negative GO annotations selection using ontology structure. Bioinformatics, 2016, 32, 2996-3004.	4.1	33
103	Predicting Protein Function via Semantic Integration of Multiple Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 220-232.	3.0	37
104	Protein Function Prediction by Random Walks on a Hybrid Graph. Current Proteomics, 2016, 13, 130-142.	0.3	5
105	Semi-Supervised Classification Based on Mixture Graph. Algorithms, 2015, 8, 1021-1034.	2.1	2
106	Predicting Protein Function Using Multiple Kernels. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 219-233.	3.0	27
107	Integrating multiple networks for protein function prediction. BMC Systems Biology, 2015, 9, S3.	3.0	23
108	Predicting protein functions using incomplete hierarchical labels. BMC Bioinformatics, 2015, 16, 1.	2.6	436

#	Article	IF	CITATION
109	Predicting protein function via downward random walks on a gene ontology. BMC Bioinformatics, 2015, 16, 271.	2.6	22
110	Semi-supervised classification based on subspace sparse representation. Knowledge and Information Systems, 2015, 43, 81-101.	3.2	32
111	Protein Function Prediction with Incomplete Annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 579-591.	3.0	25
112	Protein Function Prediction Using Multilabel Ensemble Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 1045-1057.	3.0	46
113	Protein Function Prediction Using Dependence Maximization. Lecture Notes in Computer Science, 2013, , 574-589.	1.3	21
114	Protein function prediction using weak-label learning., 2012,,.		8
115	Transductive multi-label ensemble classification for protein function prediction., 2012,,.		34
116	Semi-supervised ensemble classification in subspaces. Applied Soft Computing Journal, 2012, 12, 1511-1522.	7. 2	38
117	Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recognition, 2012, 45, 1119-1135.	8.1	96
118	Enhanced locality preserving projections using robust path based similarity. Neurocomputing, 2011, 74, 598-605.	5.9	19