Eric T Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3192760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dual transcriptional analysis of Ocimum basilicum and Peronospora belbahrii in susceptible interactions. Plant Gene, 2022, 29, 100350.	2.3	4
2	A maize gene coding for a chimeric superlectin reduces growth of maize fungal pathogens and insect pests when expressed transgenically in maize callus. Plant Gene, 2022, 30, 100359.	2.3	2
3	Natural food flavour (E)-2-hexenal, a potential antifungal agent, induces mitochondria-mediated apoptosis in Aspergillus flavus conidia via a ROS-dependent pathway. International Journal of Food Microbiology, 2022, 370, 109633.	4.7	20
4	Different maize (<i>Zea mays</i> L.) inbreds influence the efficacy of <i>Beaveria bassiana</i> against major maize caterpillar pests, which is potentially affected by maize pathogen resistance. Biocontrol Science and Technology, 2022, 32, 847-862.	1.3	1
5	Natural flavour (E,E)-2,4-heptadienal as a potential fumigant for control of Aspergillus flavus in stored peanut seeds: Finding new antifungal agents based on preservative sorbic acid. Food Control, 2021, 124, 107938.	5.5	15
6	Description of Cohnella zeiphila sp. nov., a bacterium isolated from maize callus cultures. Antonie Van Leeuwenhoek, 2021, 114, 37-44.	1.7	8
7	A maize hydrolase with activity against maize insect and fungal pests. Plant Gene, 2020, 21, 100214.	2.3	3
8	A maizewin protein confers enhanced antiinsect and antifungal resistance when the gene is transgenically expressed in maize callus. Plant Gene, 2020, 24, 100259.	2.3	5
9	Transgenic expression of a previously uncharacterized maize AIL1 gene in maize callus increases resistance to multiple maize fungal and insect pests. Plant Gene, 2020, 23, 100235.	2.3	3
10	Brevibacillus fortis NRS-1210 produces edeines that inhibit the in vitro growth of conidia and chlamydospores of the onion pathogen Fusarium oxysporum f. sp. cepae. Antonie Van Leeuwenhoek, 2020, 113, 973-987.	1.7	14
11	Phylogenomic analysis of the Brevibacillus brevis clade: a proposal for three new Brevibacillus species, Brevibacillus fortis sp. nov., Brevibacillus porteri sp. nov. and Brevibacillus schisleri sp. nov Antonie Van Leeuwenhoek, 2019, 112, 991-999.	1.7	24
12	Characterization of the infection process by Peronospora belbahrii on basil by scanning electron microscopy. Heliyon, 2019, 5, e01117.	3.2	6
13	Enhanced insect and fungal resistance of maize callus transgenically expressing a maize E2F regulatory gene. Agri Gene, 2019, 12, 100086.	1.9	6
14	Evaluation of a granular formulation containing <i>Metarhizium brunneum</i> F52 (Hypocreales:) Tj ETQq0 0 0 r Biocontrol Science and Technology, 2019, 29, 68-82.	gBT /Over 1.3	lock 10 Tf 50 7
15	Insect damage influences heat and water stress resistance gene expression in field-grown popcorn: implications in developing crop varieties adapted to climate change. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 1063-1081.	2.1	2
16	Transgenic expression of a maize geranyl geranyl transferase gene sequence in maize callus increases resistance to ear rot pathogens. Agri Gene, 2018, 7, 52-58.	1.9	3
17	Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene. Plant Gene, 2018, 13, 50-55.	2.3	14
18	Identification of a maize (Zea mays) chitinase allele sequence suitable for a role in ear rot fungal resistance. Agri Gene, 2018, 7, 15-22.	1.9	18

Eric T Johnson

#	Article	IF	CITATIONS
19	Reducing production of fumonisin mycotoxins in Fusarium verticillioides by RNA interference. Mycotoxin Research, 2018, 34, 29-37.	2.3	18
20	Overexpression of a maize (Zea mays) defensin-like gene in maize callus enhances resistance to both insects and fungi. Agri Gene, 2018, 9, 16-23.	1.9	7
21	Evaluation of Selected Fungicide Application Regimes and Biotic Agents for the Management of Basil Downy Mildew. HortTechnology, 2018, 28, 822-829.	0.9	4
22	Three sorghum serpin recombinant proteins inhibit midgut trypsin activity and growth of corn earworm. Agri Gene, 2016, 2, 11-16.	1.9	6
23	A quantitative method for determining relative colonization rates of maize callus by Fusarium graminearum for resistance gene evaluations. Journal of Microbiological Methods, 2016, 130, 73-75.	1.6	4
24	Maize peroxidase Px5 has a highly conserved sequence in inbreds resistant to mycotoxin producing fungi which enhances fungal and insect resistance. Journal of Plant Research, 2016, 129, 13-20.	2.4	18
25	Vast potential for using the piggyBac transposon to engineer transgenic plants at specific genomic locations. Bioengineered, 2016, 7, 3-6.	3.2	2
26	Antifungal Activity of a Synthetic Cationic Peptide against the Plant Pathogens Colletotrichum graminicola and Three Fusarium Species. Plant Pathology Journal, 2015, 31, 316-321.	1.7	17
27	Effects of <i>PHENYLALANINE AMMONIA LYASE</i> (<i>PAL</i>) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in <i>Brachypodium</i> . Journal of Experimental Botany, 2015, 66, 4317-4335.	4.8	146
28	Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production. Mycotoxin Research, 2015, 31, 63-82.	2.3	4
29	A non-autonomous insect piggyBac transposable element is mobile in tobacco. Molecular Genetics and Genomics, 2014, 289, 895-902.	2.1	7
30	Expression of a wolf spider toxin in tobacco inhibits the growth of microbes and insects. Biotechnology Letters, 2014, 36, 1735-1742.	2.2	8
31	Identification of a Bioactive Bowman–Birk Inhibitor from an Insect-Resistant Early Maize Inbred. Journal of Agricultural and Food Chemistry, 2014, 62, 5458-5465.	5.2	12
32	Effects of Elevated Peroxidase Levels and Corn Earworm Feeding on Gene Expression in Tomato. Journal of Chemical Ecology, 2012, 38, 1247-1263.	1.8	11
33	Enhanced Pest Resistance of Maize Leaves Expressing Monocot Crop Plant-Derived Ribosome-Inactivating Protein and Agglutinin. Journal of Agricultural and Food Chemistry, 2012, 60, 10768-10775.	5.2	32
34	Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications. Pharmaceuticals, 2012, 5, 1054-1063.	3.8	11
35	Coconut leaf bioactivity toward generalist maize insect pests. Entomologia Experimentalis Et Applicata, 2011, 141, 208-215.	1.4	7
36	Differential Activity of Multiple Saponins Against Omnivorous Insects with Varying Feeding Preferences. Journal of Chemical Ecology, 2011, 37, 443-449.	1.8	30

Eric T Johnson

#	Article	IF	CITATIONS
37	Comparative transcription profiling analyses of maize reveals candidate defensive genes for seedling resistance against corn earworm. Molecular Genetics and Genomics, 2011, 285, 517-525.	2.1	12
38	Field incidence of mycotoxins in commercial popcorn and potential environmental influences. Mycotoxin Research, 2010, 26, 15-22.	2.3	9
39	Identification and properties of insect resistance-associated maize anionic peroxidases. Phytochemistry, 2010, 71, 1289-1297.	2.9	21
40	Constitutive Expression of the Maize Genes B1 and C1 in Transgenic Hi II Maize Results in Differential Tissue Pigmentation and Generates Resistance to Helicoverpa zea. Journal of Agricultural and Food Chemistry, 2010, 58, 2403-2409.	5.2	4
41	Engineered Saccharomyces cerevisiae strain for improved xylose utilization with a three-plasmid SUMO yeast expression system. Plasmid, 2009, 61, 22-38.	1.4	29
42	Differential resistance of switchgrass Panicum virgatum L. lines to fall armyworms Spodoptera frugiperda (J. E. Smith). Genetic Resources and Crop Evolution, 2009, 56, 1077-1089.	1.6	20
43	Colored and White Sectors From Star-Patterned Petunia Flowers Display Differential Resistance to Corn Earworm and Cabbage Looper Larvae. Journal of Chemical Ecology, 2008, 34, 757-765.	1.8	51
44	Lycotoxinâ€l insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic <i>Saccharomyces cerevisiae</i> strain. Journal of Peptide Science, 2008, 14, 1039-1050.	1.4	27
45	Oral Toxicity of β-N-Acetyl Hexosaminidase to Insects. Journal of Agricultural and Food Chemistry, 2007, 55, 3421-3428.	5.2	36
46	Expression of a MaizeMybTranscription Factor Driven by a Putative Silk-Specific Promoter Significantly Enhances Resistance toHelicoverpa zeain Transgenic Maize. Journal of Agricultural and Food Chemistry, 2007, 55, 2998-3003.	5.2	23
47	Relative Activity of a Tobacco Hybrid Expressing High Levels of a Tobacco Anionic Peroxidase and Maize Ribosome-Inactivating Protein againstHelicoverpa zeaandLasioderma serricorne. Journal of Agricultural and Food Chemistry, 2006, 54, 2629-2634.	5.2	26
48	Association of a Specific Cationic Peroxidase Isozyme with Maize Stress and Disease Resistance Responses, Genetic Identification, and Identification of a cDNA Coding for the Isozyme. Journal of Agricultural and Food Chemistry, 2005, 53, 4464-4470.	5.2	24
49	Leaf axil sampling of midwest U.S. maize for mycotoxigenic Fusarium fungi using PCR analysis. Mycopathologia, 2004, 158, 431-440.	3.1	6
50	Differentially Enhanced Insect Resistance, at a Cost, inArabidopsis thalianaConstitutively Expressing a Transcription Factor of Defensive Metabolites. Journal of Agricultural and Food Chemistry, 2004, 52, 5135-5138.	5.2	71
51	Enhanced Resistance toHelicoverpa zeain Tobacco Expressing an Activated Form of Maize Ribosome- Inactivating Protein. Journal of Agricultural and Food Chemistry, 2003, 51, 3568-3574.	5.2	53
52	Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant Journal, 2001, 25, 325-333.	5.7	196
53	Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. Plant Journal, 1999, 19, 81-85.	5.7	135