Bogdan M Musielak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3192744/publications.pdf

Version: 2024-02-01

414414 430874 1,937 33 18 32 citations g-index h-index papers 37 37 37 1825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure, 2015, 23, 2341-2348.	3.3	399
2	Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget, 2016, 7, 30323-30335.	1.8	297
3	Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Death-Ligand 1 (PD-1/PD-L1) Interaction via Transiently Induced Protein States and Dimerization of PD-L1. Journal of Medicinal Chemistry, 2017, 60, 5857-5867.	6.4	242
4	Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget, 2017, 8, 72167-72181.	1.8	221
5	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€1 Immune Checkpoint. Angewandte Chemie - International Edition, 2017, 56, 13732-13735.	13.8	131
6	CA-170 – A Potent Small-Molecule PD-L1 Inhibitor or Not?. Molecules, 2019, 24, 2804.	3.8	103
7	Design, Synthesis, Evaluation, and Structural Studies of <i>C</i> ₂ -Symmetric Small Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 7250-7263.	6.4	71
8	Di-bromo-Based Small-Molecule Inhibitors of the PD-1/PD-L1 Immune Checkpoint. Journal of Medicinal Chemistry, 2020, 63, 11271-11285.	6.4	45
9	Human and mouse PD-L1: similar molecular structure, but different druggability profiles. IScience, 2021, 24, 101960.	4.1	45
10	Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 11614-11636.	6.4	42
11	Twoâ€Step Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie - International Edition, 2017, 56, 10725-10729.	13.8	37
12	A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chemical Biology, 2016, $11,3310-3318$.	3.4	31
13	Rational design and synthesis of 1,5-disubstituted tetrazoles as potent inhibitors of the MDM2-p53 interaction. European Journal of Medicinal Chemistry, 2017, 126, 384-407.	5.5	30
14	Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Medicinal Chemistry Letters, 2021, 12, 768-773.	2.8	30
15	Artificial Macrocycles as Potent p53–MDM2 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1025-1030.	2.8	28
16	Identification of small-molecule inhibitors of USP2a. European Journal of Medicinal Chemistry, 2018, 150, 261-267.	5.5	24
17	Application of dimedone enamines as dienophiles: stereoselective synthesis of amino enols of fused uracils containing a sugar moiety by hetero-Diels–Alder reactions of barbituric acid 5-ylidene alditols with dimedone enamines. Tetrahedron, 2015, 71, 8911-8924.	1.9	19
18	Chelate Ring Size Effect as a Factor of Selective Fluorescent Recognition of Zn ²⁺ lons by Pyrrolo[2,3- <i>b</i>)]quinoxaline with a Substituted 2-Pyridyl Group Receptor. Inorganic Chemistry, 2015, 54, 8423-8435.	4.0	18

#	Article	IF	CITATIONS
19	PD-L1 Inhibitors: Different Classes, Activities, and Mechanisms of Action. International Journal of Molecular Sciences, 2021, 22, 11797.	4.1	18
20	Preliminary Studies of Antimicrobial Activity of New Synthesized Hybrids of 2-Thiohydantoin and 2-Quinolone Derivatives Activated with Blue Light. Molecules, 2022, 27, 1069.	3.8	16
21	Bioactive Macrocyclic Inhibitors of the PDâ€1/PDâ€11 Immune Checkpoint. Angewandte Chemie, 2017, 129, 13920-13923.	2.0	13
22	Competition NMR for Detection of Hit/Lead Inhibitors of Protein–Protein Interactions. Molecules, 2020, 25, 3017.	3.8	11
23	π–π-Induced aggregation and single-crystal fluorescence anisotropy of 5,6,10b-triazaacephenanthrylene. IUCrJ, 2018, 5, 335-347.	2.2	10
24	Twoâ€Step Synthesis of Complex Artificial Macrocyclic Compounds. Angewandte Chemie, 2017, 129, 10865-10869.	2.0	9
25	Conformations and Conformational Processes of Hexahydrobenzazocines by NMR and DFT Studies. Journal of Organic Chemistry, 2015, 80, 9231-9239.	3.2	6
26	A concerted evolution of supramolecular interactions in a {cation; metal complex; π-acid; solvent} anion-π system. Inorganic Chemistry Frontiers, 2020, 7, 1851-1863.	6.0	6
27	Mechanism of MyD88S mediated signal termination. Cell Communication and Signaling, 2022, 20, 10.	6.5	6
28	Crystal structure of the FAS1 domain of the hyaluronic acid receptor stabilin-2. Acta Crystallographica Section D: Structural Biology, 2018, 74, 695-701.	2.3	5
29	Optimized Inhibitors of MDM2 via an Attempted Proteinâ€√emplated Reductive Amination. ChemMedChem, 2020, 15, 370-375.	3.2	5
30	Macrocyclic Peptide Inhibitor of PDâ€1/PDâ€11 Immune Checkpoint. Advanced Therapeutics, 2021, 4, 2000195.	3.2	5
31	Structural Characterization of a Macrocyclic Peptide Modulator of the PD-1/PD-L1 Immune Checkpoint Axis. Molecules, 2021, 26, 4848.	3.8	5
32	Composite Nitride Nanoceramics in the System Titanium Nitride (TiN)-Aluminum Nitride (AlN) through High Pressure and High Temperature Sintering of Synthesis-Mixed Nanocrystalline Powders. Materials, 2021, 14, 588.	2.9	3
33	Application of bioorthogonal hetero-Diels–Alder cycloaddition of 5-arylidene derivatives of 1,3-dimethylbarbituric acid and vinyl thioether for imaging inside living cells. Organic and Biomolecular Chemistry, 2021, 19, 6045-6058.	2.8	O