Derek J Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3191918/publications.pdf

Version: 2024-02-01

304743 254184 2,004 46 22 43 h-index citations g-index papers 50 50 50 1598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative analyses of sanitizing solutions on microbial reduction and quality of leafy greens. LWT - Food Science and Technology, 2022, 154, 112696.	5.2	8
2	Use of edible alginate and limonene-liposome coatings for shelf-life improvement of blackberries. Future Foods, 2021, 4, 100091.	5 . 4	14
3	The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development. MBio, 2020, 11 , .	4.1	24
4	Chlamydia -Specific IgA Secretion in the Female Reproductive Tract Induced via Per-Oral Immunization Confers Protection against Primary Chlamydia Challenge. Infection and Immunity, 2020, 89, .	2.2	4
5	Synthesis and Antichlamydial Activity of Molecules Based on Dysregulators of Cylindrical Proteases. Journal of Medicinal Chemistry, 2020, 63, 4370-4387.	6.4	7
6	CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Scientific Reports, 2019, 9, 6133.	3.3	17
7	Initial Characterization of the Two ClpP Paralogs of <i>Chlamydia trachomatis</i> Functionality for Each. Journal of Bacteriology, 2019, 201, .	2.2	18
8	Genetic Inactivation of Chlamydia trachomatis Inclusion Membrane Protein CT228 Alters MYPT1 Recruitment, Extrusion Production, and Longevity of Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 415.	3.9	28
9	Inhibition of the Protein Phosphatase CppA Alters Development of Chlamydia trachomatis. Journal of Bacteriology, 2018, 200, .	2.2	4
10	The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces Chlamydia trachomatis Infectivity and Growth. Frontiers in Cellular and Infection Microbiology, 2018, 8, 145.	3.9	21
11	Antimicrobial efficacy of liposomes containing d -limonene and its effect on the storage life of blueberries. Postharvest Biology and Technology, 2017, 128, 130-137.	6.0	92
12	Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins. Journal of Bacteriology, 2017, 199, .	2.2	8
13	Nonthermal pasteurization of tender coconut water using a continuous flow coiled UV reactor. LWT - Food Science and Technology, 2017, 83, 127-131.	5.2	24
14	Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis. Methods in Molecular Biology, 2017, 1498, 163-177.	0.9	19
15	The Impact of Protein Phosphorylation on Chlamydial Physiology. Frontiers in Cellular and Infection Microbiology, 2016, 6, 197.	3.9	13
16	CTL0511 from Chlamydia trachomatis Is a Type 2C Protein Phosphatase with Broad Substrate Specificity. Journal of Bacteriology, 2016, 198, 1827-1836.	2.2	6
17	Deciphering a unique biotin scavenging pathway with redundant genes in the probiotic bacterium Lactococcus lactis. Scientific Reports, 2016, 6, 25680.	3.3	10
18	A Coming of Age Story: Chlamydia in the Post-Genetic Era. Infection and Immunity, 2016, 84, 612-621.	2.2	22

#	Article	IF	Citations
19	The Rsb Phosphoregulatory Network Controls Availability of the Primary Sigma Factor in Chlamydia trachomatis and Influences the Kinetics of Growth and Development. PLoS Pathogens, 2015, 11, e1005125.	4.7	37
20	Use of aminoglycoside $3\hat{a}\in^2$ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Research Notes, 2015, 8, 570.	1.4	59
21	Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms. Microbiology (United Kingdom), 2015, 161, 1648-1658.	1.8	10
22	Synergistic Effects of Clostridium perfringens Enterotoxin and Beta Toxin in Rabbit Small Intestinal Loops. Infection and Immunity, 2014, 82, 2958-2970.	2.2	33
23	Chlamydia trachomatis Transports NAD via the Npt1 ATP/ADP Translocase. Journal of Bacteriology, 2014, 196, 2323-2323.	2.2	0
24	Chlamydia trachomatis Transports NAD via the Npt1 ATP/ADP Translocase. Journal of Bacteriology, 2013, 195, 3381-3386.	2.2	48
25	Site-Specific, Insertional Inactivation of incA in Chlamydia trachomatis Using a Group II Intron. PLoS ONE, 2013, 8, e83989.	2.5	133
26	Characterization of the activity and expression of arginine decarboxylase in human and animalChlamydiapathogens. FEMS Microbiology Letters, 2012, 337, 140-146.	1.8	9
27	The effect of Clostridium perfringens type C strain CN3685 and its isogenic beta toxin null mutant in goats. Veterinary Microbiology, 2012, 157, 412-419.	1.9	38
28	Uptake of Biotin by Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT). PLoS ONE, 2012, 7, e46052.	2.5	46
29	Identification and Characterization of the Chlamydia trachomatis L2 <i>S</i> -Adenosylmethionine Transporter. MBio, 2011, 2, e00051-11.	4.1	22
30	Development and Application of New Mouse Models To Study the Pathogenesis of <i>Clostridium perfringens</i> Type C Enterotoxemias. Infection and Immunity, 2009, 77, 5291-5299.	2.2	50
31	Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatisserovar L2 and D strains. BMC Evolutionary Biology, 2009, 9, 166.	3.2	13
32	Beta toxin is essential for the intestinal virulence of <i>Clostridium perfringens</i> type C disease isolate CN3685 in a rabbit ileal loop model. Molecular Microbiology, 2008, 67, 15-30.	2.5	157
33	Ulcerative Enteritis-Like Disease Associated with Clostridium perfringens Type A in Bobwhite Quail (Colinus virginianus). Avian Diseases, 2008, 52, 635-640.	1.0	18
34	Ulcerative Enterocolitis in Two Goats Associated with Enterotoxin- and beta2 Toxin–Positive <i>Clostridium Perfringens</i> Type D. Journal of Veterinary Diagnostic Investigation, 2008, 20, 668-672.	1.1	16
35	Ulcerative Enteritis-Like Disease Associated With Clostridium Perfringens Type A In Bobwhite Quail (Colinus virginianus). Avian Diseases Digest, 2008, 3, e23-e24.	0.0	0
36	Toxinotypes of <i>Clostridium Perfringens </i> Isolated from Sick and Healthy Avian Species. Journal of Veterinary Diagnostic Investigation, 2007, 19, 329-333.	1.1	51

#	Article	lF	CITATION
37	Both Epsilon-Toxin and Beta-Toxin Are Important for the Lethal Properties of Clostridium perfringens Type B Isolates in the Mouse Intravenous Injection Model. Infection and Immunity, 2007, 75, 1443-1452.	2.2	52
38	Development and Application of an Oral Challenge Mouse Model for Studying Clostridium perfringens Type D Infection. Infection and Immunity, 2007, 75, 4282-4288.	2.2	35
39	Disruption of a toxin gene by introduction of a foreign gene into the chromosome of Clostridium perfringens using targetron-induced mutagenesis. Plasmid, 2007, 58, 182-189.	1.4	22
40	Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Research, 2006, 16, 1031-1040.	5 . 5	281
41	Complete Sequencing and Diversity Analysis of the Enterotoxin-Encoding Plasmids in Clostridium perfringens Type A Non-Food-Borne Human Gastrointestinal Disease Isolates. Journal of Bacteriology, 2006, 188, 1585-1598.	2.2	80
42	Dissecting the Contributions of Clostridium perfringens Type C Toxins to Lethality in the Mouse Intravenous Injection Model. Infection and Immunity, 2006, 74, 5200-5210.	2.2	83
43	Association of beta2 toxin production with Clostridium perfringenstype A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene. Molecular Microbiology, 2005, 56, 747-762.	2.5	149
44	Construction of an Alpha Toxin Gene Knockout Mutant of Clostridium perfringens Type A by Use of a Mobile Group II Intron. Applied and Environmental Microbiology, 2005, 71, 7542-7547.	3.1	129
45	Epsilon-Toxin Is Required for Most Clostridium perfringens Type D Vegetative Culture Supernatants To Cause Lethality in the Mouse Intravenous Injection Model. Infection and Immunity, 2005, 73, 7413-7421.	2.2	62
46	Kinetic and Docking Studies of the Interaction of Quinones with the Quinone Reductase Active Siteâ€. Biochemistry, 2003, 42, 1985-1994.	2.5	27