Eric McLamore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3191370/publications.pdf

Version: 2024-02-01

147801 175258 3,044 113 31 52 citations h-index g-index papers 118 118 118 4195 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine, 2011, 6, 879-898.	3.3	386
2	Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of <i>Salmonella enterica</i> in Chicken Broth. ACS Sensors, 2020, 5, 1900-1911.	7.8	148
3	Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39124-39133.	8.0	117
4	Non-invasive quantification of endogenous root auxin transport using an integrated flux microsensor technique. Plant Journal, 2010, 63, 1004-1016.	5.7	112
5	A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosensors and Bioelectronics, 2016, 85, 479-487.	10.1	91
6	Nanomaterial-mediated Biosensors for Monitoring Glucose. Journal of Diabetes Science and Technology, 2014, 8, 403-411.	2.2	85
7	Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials. Biosensors, 2018, 8, 42.	4.7	85
8	A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport. Biosensors and Bioelectronics, 2011, 26, 2237-2245.	10.1	79
9	Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens. Journal of Molecular Liquids, 2017, 238, 263-269.	4.9	77
10	A comparative study of enzyme immobilization strategies for multi-walled carbon nanotube glucose biosensors. Nanotechnology, 2011, 22, 355502.	2.6	75
11	Rapid and Label-Free Detection of Interferon Gamma via an Electrochemical Aptasensor Comprising a Ternary Surface Monolayer on a Gold Interdigitated Electrode Array. ACS Sensors, 2017, 2, 210-217.	7.8	71
12	DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids and Surfaces B: Biointerfaces, 2017, 159, 16-22.	5.0	71
13	A self-referencing glutamate biosensor for measuring real time neuronal glutamate flux. Journal of Neuroscience Methods, 2010, 189, 14-22.	2.5	62
14	The role of plasma membrane H ⁺ â€ <scp>ATP</scp> ase in jasmonateâ€induced ion fluxes and stomatal closure in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 83, 638-649.	5.7	60
15	Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. Journal of Materials Chemistry, 2011, 21, 11224.	6.7	58
16	Emerging Biorecognition and Transduction Schemes for Rapid Detection of Pathogenic Bacteria in Food. Comprehensive Reviews in Food Science and Food Safety, 2017, 16, 1188-1205.	11.7	56
17	A comparative study of graphene–hydrogel hybrid bionanocomposites for biosensing. Analyst, The, 2015, 140, 1466-1476.	3.5	53
18	Silver nanoparticle-specific mitotoxicity in <i>Daphnia magna</i> Nanotoxicology, 2014, 8, 833-842.	3.0	51

#	Article	IF	Citations
19	A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosensors and Bioelectronics, 2014, 58, 179-185.	10.1	49
20	ABE-Stat, a Fully Open-Source and Versatile Wireless Potentiostat Project Including Electrochemical Impedance Spectroscopy. Journal of the Electrochemical Society, 2019, 166, B3056-B3065.	2.9	49
21	Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing. Chemical Society Reviews, 2011, 40, 5308.	38.1	45
22	Body mass scaling of passive oxygen diffusion in endotherms and ectotherms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5340-5345.	7.1	44
23	Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLoS ONE, 2016, 11, e0166557.	2.5	43
24	Nonâ€invasive selfâ€referencing electrochemical sensors for quantifying realâ€time biofilm analyte flux. Biotechnology and Bioengineering, 2009, 102, 791-799.	3.3	42
25	Self-referencing optrodes for measuring spatially resolved, real-time metabolic oxygen flux in plant systems. Planta, 2010, 232, 1087-1099.	3.2	37
26	Mechanical Stretch Induced Calcium Efflux from Bone Matrix Stimulates Osteoblasts. Bone, 2012, 50, 581-591.	2.9	37
27	Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst, The, 2018, 143, 1650-1661.	3.5	37
28	A comparative study of carbon–platinum hybrid nanostructure architecture for amperometric biosensing. Analyst, The, 2014, 139, 660-667.	3.5	36
29	Graphene-Anchored Cuprous Oxide Nanoparticles from Waste Electric Cables for Electrochemical Sensing. ACS Sustainable Chemistry and Engineering, 2018, 6, 12176-12186.	6.7	36
30	Accessing Legacy Phosphorus in Soils. Soil Systems, 2020, 4, 74.	2.6	35
31	Membrane-Aerated Biofilm Proton and Oxygen Flux during Chemical Toxin Exposure. Environmental Science & Environmental Science	10.0	34
32	<i>Post hoc</i> support vector machine learning for impedimetric biosensors based on weak protein–ligand interactions. Analyst, The, 2018, 143, 2066-2075.	3.5	33
33	1,25-Dihydroxyvitamin D regulation of glucose metabolism in Harvey-ras transformed MCF10A human breast epithelial cells. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 81-89.	2.5	30
34	Planar Interdigitated Aptasensor for Flow-Through Detection of Listeria spp. in Hydroponic Lettuce Growth Media. Sensors, 2020, 20, 5773.	3.8	30
35	Oscillatory glucose flux in INS 1 pancreatic \hat{l}^2 cells: A self-referencing microbiosensor study. Analytical Biochemistry, 2011, 411, 185-193.	2.4	29
36	Mercury Pollution and Artisanal Gold Mining in Alto Cauca, Colombia: Woman's Perception of Health and Environmental Impacts. Journal of Environment and Development, 2018, 27, 415-444.	3.2	29

#	Article	IF	CITATIONS
37	A self-referencing biosensor for real-time monitoring of physiological ATP transport in plant systems. Biosensors and Bioelectronics, 2015, 74, 37-44.	10.1	28
38	Hydrodynamic Characteristics in Biotrickling Filters as Affected by Packing Material and Hydraulic Loading Rate. Journal of Environmental Engineering, ASCE, 2008, 134, 346-352.	1.4	26
39	Abiotic transport in a membrane aerated bioreactor. Journal of Membrane Science, 2007, 298, 110-116.	8.2	25
40	Altered glucose metabolism in Harvey- <i>ras</i> transformed MCF10A cells. Molecular Carcinogenesis, 2015, 54, 111-120.	2.7	23
41	Shearâ€induced detachment of biofilms from hollow fiber silicone membranes. Biotechnology and Bioengineering, 2013, 110, 525-534.	3.3	22
42	A real-time, non-invasive, micro-optrode technique for detecting seed viability by using oxygen influx. Scientific Reports, 2013, 3, 3057.	3.3	22
43	Microsensor technology for measuring H+ flux in buffered media. Sensors and Actuators B: Chemical, 2009, 136, 383-387.	7.8	20
44	A simple method for quantifying biomass cell and polymer distribution in biofilms. Journal of Microbiological Methods, 2013, 94, 367-374.	1.6	20
45	FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosensors and Bioelectronics, 2021, 178, 113011.	10.1	19
46	Nitrificationâ€Denitrification Biological Treatment of a Highâ€Nitrogen Waste Stream for Waterâ€Reuse Applications. Water Environment Research, 2009, 81, 423-431.	2.7	18
47	Cellâ€mediated deposition of porous silica on bacterial biofilms. Biotechnology and Bioengineering, 2011, 108, 2249-2260.	3.3	18
48	MeJA Affects Root Growth by Modulation of Transmembrane Auxin Flux in the Transition Zone. Journal of Plant Growth Regulation, 2016, 35, 256-265.	5.1	18
49	A High-Throughput Microfluidic Magnetic Separation (ÂμFMS) Platform for Water Quality Monitoring. Micromachines, 2020, 11, 16.	2.9	18
50	SNAPS: Sensor Analytics Point Solutions for Detection and Decision Support Systems. Sensors, 2019, 19, 4935.	3.8	17
51	Nanomaterial based self-referencing microbiosensors for cell and tissue physiology research. Biosensors and Bioelectronics, 2013, 40, 127-134.	10.1	16
52	pulSED: pulsed sonoelectrodeposition of fractal nanoplatinum for enhancing amperometric biosensor performance. Analyst, The, 2016, 141, 3367-3378.	3.5	16
53	Model Development for Biotrickling Filter Treatment of Graywater Simulant and Waste Gas. I. Journal of Environmental Engineering, ASCE, 2008, 134, 813-825.	1.4	13
54	Salmonella enterica biofilm-mediated dispersal by nitric oxide donors in association with cellulose nanocrystal hydrogels. AMB Express, 2015, 5, 28.	3.0	13

#	Article	IF	Citations
55	Rapid isolation of Escherichia coli from water samples using magnetic microdiscs. Sensors and Actuators B: Chemical, 2019, 291, 58-66.	7.8	13
56	Simple approach for large-scale production of reduced graphene oxide films. Chemical Engineering Journal, 2014, 243, 340-346.	12.7	12
57	Sensor-as-a-Service: Convergence of Sensor Analytic Point Solutions (SNAPS) and Pay-A-Penny-Per-Use (PAPPU) Paradigm as a Catalyst for Democratization of Healthcare in Underserved Communities. Diagnostics, 2020, 10, 22.	2.6	11
58	Incorporation of a Membrane-Aerated Bioreactor in a Water Recovery System., 2004,,.		10
59	Glutathione-Gated Potassium Efflux as a Mechanism of Active Biofilm Detachment. Water Environment Research, 2014, 86, 462-469.	2.7	9
60	Food Processing and Waste Within the Nexus Framework. Current Sustainable/Renewable Energy Reports, 2017, 4, 99-108.	2.6	9
61	Sense–Analyze–Respond–Actuate (SARA) Paradigm: Proof of Concept System Spanning Nanoscale and Macroscale Actuation for Detection of Escherichia coli in Aqueous Media. Actuators, 2021, 10, 2.	2.3	9
62	Emerging technologies for non-invasive quantification of physiological oxygen transport in plants. Planta, 2013, 238, 599-614.	3.2	8
63	Impedance biosensor for the rapid detection of <i> Listeria < /i > spp. based on aptamer functionalized Pt-interdigitated microelectrodes array. Proceedings of SPIE, 2016, , .</i>	0.8	8
64	Insect Herbivory of Leaves Affects the Auxin Flux Along Root Apices in Arabidopsis thaliana. Journal of Plant Growth Regulation, 2017, 36, 846-854.	5.1	8
65	Cleanability of milk deposits on inner stainless steel tubing surfaces prepared by magnetic abrasive finishing. Engineering in Agriculture, Environment and Food, 2017, 10, 63-68.	0.5	8
66	One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. Biosensors, 2021, 11, 511.	4.7	8
67	Hydrophobic laser-induced graphene potentiometric ion-selective electrodes for nitrate sensing. Mikrochimica Acta, 2022, 189, 122.	5.0	8
68	CML8 and GAD4 function in (Z)–3–hexenol–mediated defense by regulating γ–aminobutyric acid accumulation in Arabidopsis. Plant Physiology and Biochemistry, 2022, 186, 135-144.	5.8	8
69	Simultaneous Treatment of Graywater and Waste Gas in a Biological Trickling Filter. Water Environment Research, 2008, 80, 2096-2103.	2.7	7
70	Digital Proxy of a Bio-Reactor (DIYBOT) combines sensor data and data analytics to improve greywater treatment and wastewater management systems. Scientific Reports, 2020, 10, 8015.	3.3	7
71	Prevalence of Escherichia coli and Antibiotic-Resistant Bacteria During Fresh Produce Production (Romaine Lettuce) Using Municipal Wastewater Effluents. Frontiers in Microbiology, 2021, 12, 660047.	3.5	7
72	Modeling exposure risk and prevention of mercury in drinking water for artisanal-small scale gold mining communities. Human and Ecological Risk Assessment (HERA), 2021, 27, 1492-1508.	3.4	7

#	Article	IF	CITATIONS
73	Characterization of Effluent from Biological Trickling Filters Treating Graywater in Advanced Life Support Systems. Habitation, 2007, 11, 95-104.	0.2	6
74	A self-referencing microelectrode for real time measurements of silver flux. Sensors and Actuators B: Chemical, 2011, 153, 445-452.	7.8	6
75	Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities. Journal of Microbiological Methods, 2014, 96, 62-67.	1.6	6
76	Cryoconcentration of flavonoid extract for enhanced biophotovoltaics and pH sensitive thin films. Biotechnology Progress, 2018, 34, 206-217.	2.6	6
77	Advances in Translational Nanotechnology: Challenges and Opportunities. Applied Sciences (Switzerland), 2020, 10, 4881.	2.5	6
78	Non-invasive measurement of real-time oxygen flux in plant systems with a self-referencing optrode. Protocol Exchange, 0, , .	0.3	6
79	Bioanalytical approaches for the detection, characterization, and risk assessment of micro/nanoplastics in agriculture and food systems. Analytical and Bioanalytical Chemistry, 2022, 414, 4591-4612.	3.7	6
80	Lignin and silicate based hydrogels for biosensor applications. Proceedings of SPIE, 2013, , .	0.8	5
81	Hybrid Metallic Nanoparticles: Enhanced Bioanalysis and Biosensing via Carbon Nanotubes, Graphene, and Organic Conjugation., 2015,, 137-166.		5
82	Development of a Biosensor Based on Angiotensinâ€Converting Enzyme II for Severe Acute Respiratory Syndrome Coronavirus 2 Detection in Human Saliva. Frontiers in Sensors, 0, 3, .	3.3	5
83	Development of a Nitrifying Bioreactor for the Treatment of Wastewater in Long-Term Space Applications. , 2004, , 376.		4
84	Comparative study of non-invasive methods for assessing Daphnia magna embryo toxicity. Environmental Science and Pollution Research, 2014, 21, 10803-10814.	5.3	4
85	A multiplexing fiber optic microsensor system for monitoring spatially resolved oxygen patterns. Sensors and Actuators B: Chemical, 2014, 196, 71-79.	7.8	4
86	Biomimetic Fractal Nanometals As A Transducer Layer in Electrochemical Biosensing. , 2016, , 35-67.		4
87	Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon–metal electrode. Analytical Methods, 2017, 9, 6061-6072.	2.7	4
88	Synthesis and applications of cellulose nanohybrid materials. , 2017, , 289-320.		4
89	Identification of a maize (<i>Zea mays</i> L.) inbred line adapted to lowâ€P conditions via analyses of phosphorus utilization, root acidification, and calcium influx. Journal of Plant Nutrition and Soil Science, 2018, 181, 275-286.	1.9	4
90	Emerging mercury mitigation solutions for artisanal small-scale gold mining communities evaluated through a multicriteria decision analysis approach. Environment Systems and Decisions, 2021, 41, 413-424.	3.4	4

#	Article	lF	Citations
91	Next Generation of AMR Network. Encyclopedia, 2021, 1, 871-892.	4.5	4
92	Evaluation of Biological Trickling Filter Performance for Graywater Treatment in ALS Systems. , 2005, , .		3
93	A difference imaging technique for monitoring real-time changes in morphology within the cell, tissue, and organism spatial domain. , 2010, , .		3
94	Rapid detection of listeria spp. using an internalin A aptasensor based on carbon-metal nanohybrid structures. Proceedings of SPIE, $2015, \ldots$	0.8	3
95	Predictive Modeling of Oxygen Transmission Through Micro-perforations for Packaging Applications. Journal of Applied Packaging Research, 2015, 7, 17-31.	0.5	3
96	Xanthine oxidase biosensor for monitoring meat spoilage. Proceedings of SPIE, 2014, , .	0.8	2
97	Measuring Spatial and Temporal Oxygen Flux Near Plant Tissues Using a Self-Referencing Optrode. Methods in Molecular Biology, 2017, 1670, 267-281.	0.9	2
98	Abiotic Ammonia Mass Transfer in a Biotrickling Filter. , 2006, , 1.		1
99	Dynamics of Human Urine Storage in the Early Planetary Base Wastestream. Habitation, 2007, 11, 139-147.	0.2	1
100	A multiplexing fiber optic microsensor system for monitoring oxygen concentration in plants. Proceedings of SPIE, $2013, \ldots$	0.8	1
101	Modelling Gas Transmission in Cylindrical Dynamic Accumulation Oxygen Transmission Rate Chambers to Explore Implications of Oxygen Sensor Location Relative to Samples. Packaging Technology and Science, 2014, 27, 651-662.	2.8	1
102	Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors. , 2016, , .		1
103	Effect of platinum nanoparticle deposition parameters on hydrogen peroxide transduction for applications in wearable electrochemical glucose biosensors. Proceedings of SPIE, 2016, , .	0.8	1
104	Non-invasive microsensors for studying cell/tissue physiology. Proceedings of SPIE, 2013, , .	0.8	1
105	Context-Aware Diagnostic Specificity (CADS). Biosensors, 2022, 12, 101.	4.7	1
106	Simultaneous Biodegradation of a Two-Phase Fluid: Discolored Biofilm Issues. , 2006, , .		0
107	Monitoring the health of bacteria critical to wastewater treatment facilities. Membrane Technology, 2009, 2009, 10-11.	0.1	0
108	Oxygen flux as an indicator of physiological stress in aquatic organisms: a real-time biomonitoring system of water quality. , 2009, , .		0

#	Article	IF	CITATIONS
109	Self-referencing luminescent optrodes for non-invasive, real time measurement of extracellular flux. Proceedings of SPIE, $2011, \ldots$	0.8	O
110	MECHANICAL STRETCH INDUCED CALCIUM EFFLUX FROM BONE MATRIX STIMULATES OSTEOBLASTS. Journal of Biomechanics, 2012, 45, S249.	2.1	0
111	Investigation of magnetic microdiscs for bacterial pathogen detection. Proceedings of SPIE, 2016, , .	0.8	O
112	A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Proceedings of SPIE, 2016, , .	0.8	0
113	A Systems View Towards More Sustainable Irrigation Design. Irrigation & Drainage Systems Engineering, 2012, 01, .	0.1	0