
Steven S Segal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/319126/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of Blood Flow in the Microcirculation. Microcirculation, 2005, 12, 33-45.	1.8	437
2	Electrical Coupling Between Endothelial Cells and Smooth Muscle Cells in Hamster Feed Arteries. Circulation Research, 2000, 87, 474-479.	4.5	275
3	Endothelial Cell Pathway for Conduction of Hyperpolarization and Vasodilation Along Hamster Feed Artery. Circulation Research, 2000, 86, 94-100.	4.5	222
4	Neural control of muscle blood flow during exercise. Journal of Applied Physiology, 2004, 97, 731-738.	2.5	207
5	A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2512-2517.	7.1	196
6	Propagated Endothelial Ca ²⁺ Waves and Arteriolar Dilation In Vivo. Circulation Research, 2007, 101, 1300-1309.	4.5	186
7	Intravenous Hemostat: Nanotechnology to Halt Bleeding. Science Translational Medicine, 2009, 1, 11ra22.	12.4	162
8	Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H178-H186.	3.2	159
9	Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16315-16320.	7.1	141
10	Role for endothelial cell conduction in ascending vasodilatation and exercise hyperaemia in hamster skeletal muscle. Journal of Physiology, 2001, 536, 937-946.	2.9	127
11	Connexin expression and conducted vasodilation along arteriolar endothelium in mouse skeletal muscle. Journal of Applied Physiology, 2004, 97, 1152-1158.	2.5	115
12	Expression of homocellular and heterocellular gap junctions in hamster arterioles and feed arteries. Cardiovascular Research, 2003, 60, 643-653.	3.8	106
13	Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. Journal of Physiology, 1999, 516, 283-291.	2.9	103
14	Defining electrical communication in skeletal muscle resistance arteries: a computational approach. Journal of Physiology, 2005, 568, 267-281.	2.9	103
15	Electrical activation of endothelium evokes vasodilation and hyperpolarization along hamster feed arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H160-H167.	3.2	97
16	Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H102-H109.	3.2	93
17	Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle. Journal of Physiology, 2003, 550, 563-574.	2.9	91
18	Homocellular Conduction Along Endothelium and Smooth Muscle of Arterioles in Hamster Cheek Pouch. Circulation Research, 2003, 93, 61-68.	4.5	90

#	Article	IF	CITATIONS
19	Codistribution of NOS and caveolin throughout peripheral vasculature and skeletal muscle of hamsters. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1167-H1177.	3.2	86
20	Vasomotor control in arterioles of the mouse cremaster muscle. FASEB Journal, 2000, 14, 197-207.	0.5	84
21	Arteriolar network architecture and vasomotor function with ageing in mouse gluteus maximus muscle. Journal of Physiology, 2004, 561, 535-545.	2.9	83
22	Resolution of smooth muscle and endothelial pathways for conduction along hamster cheek pouch arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H604-H612.	3.2	77
23	Perivascular Innervation: A Multiplicity of Roles in Vasomotor Control and Myoendothelial Signaling. Microcirculation, 2013, 20, 217-238.	1.8	77
24	Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries. Journal of Physiology, 2007, 579, 175-186.	2.9	76
25	Rapid dilation of arterioles with single contraction of hamster skeletal muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H119-H127.	3.2	74
26	Aging Impairs Electrical Conduction Along Endothelium of Resistance Arteries Through Enhanced Ca2+-Activated K ⁺ Channel Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1892-1901.	2.4	69
27	Tuning Electrical Conduction Along Endothelial Tubes of Resistance Arteries Through Ca ²⁺ -Activated K ⁺ Channels. Circulation Research, 2012, 110, 1311-1321.	4.5	68
28	Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control. Journal of Vascular Research, 2015, 52, 136-157.	1.4	63
29	Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations. Journal of Applied Physiology, 1997, 83, 1223-1234.	2.5	60
30	Temporal Events Underlying Arterial Remodeling After Chronic Flow Reduction in Mice. Circulation Research, 2000, 86, 1160-1166.	4.5	60
31	Blunting of rapid onset vasodilatation and blood flow restriction in arterioles of exercising skeletal muscle with ageing in male mice. Journal of Physiology, 2010, 588, 2269-2282.	2.9	59
32	Interaction Between Conducted Vasodilation and Sympathetic Nerve Activation in Arterioles of Hamster Striated Muscle. Circulation Research, 1995, 76, 885-891.	4.5	57
33	Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for L-type Ca2+ channels. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H2018-H2024.	3.2	55
34	Effect of motor unit recruitment on functional vasodilatation in hamster retractor muscle. Journal of Physiology, 2000, 524, 267-278.	2.9	55
35	Function and expression of ryanodine receptors and inositol 1,4,5â€ŧrisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles. Journal of Physiology, 2012, 590, 1849-1869.	2.9	55
36	Role of EDHF in conduction of vasodilation along hamster cheek pouch arterioles in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1832-H1839.	3.2	54

#	Article	IF	CITATIONS
37	Electrical conduction along endothelial cell tubes from mouse feed arteries: confounding actions of glycyrrhetinic acid derivatives. British Journal of Pharmacology, 2012, 166, 774-787.	5.4	53
38	Muscle Length Directs Sympathetic Nerve Activity and Vasomotor Tone in Resistance Vessels of Hamster Retractor. Circulation Research, 1996, 79, 551-559.	4.5	53
39	Propagation of calcium waves along endothelium of hamster feed arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H1634-H1640.	3.2	52
40	Barium chloride injures myofibers through calcium-induced proteolysis with fragmentation of motor nerves and microvessels. Skeletal Muscle, 2019, 9, 27.	4.2	49
41	Connexin Isoform Expression in Smooth Muscle Cells and Endothelial Cells of Hamster Cheek Pouch Arterioles and Retractor Feed Arteries. Microcirculation, 2008, 15, 503-514.	1.8	48
42	Alignment of microvascular units along skeletal muscle fibers of hamster retractor. Journal of Applied Physiology, 1997, 82, 42-48.	2.5	47
43	Contribution of Active Membrane Processes to Conducted Hyperpolarization in Arterioles of Hamster Cheek Pouch. Microcirculation, 2004, 11, 425-433.	1.8	45
44	Electrophysiological Basis of Arteriolar Vasomotion in vivo. Journal of Vascular Research, 2000, 37, 568-575.	1.4	44
45	Spreading the signal for vasodilatation: implications for skeletal muscle blood flow control and the effects of ageing. Journal of Physiology, 2012, 590, 6277-6284.	2.9	42
46	VEGF-A and Semaphorin3A: Modulators of vascular sympathetic innervation. Developmental Biology, 2009, 334, 119-132.	2.0	38
47	Sympathetic neural inhibition of conducted vasodilatation along hamster feed arteries: complementary effects of α1- and α2-adrenoreceptor activation. Journal of Physiology, 2005, 563, 541-555.	2.9	37
48	Regional heterogeneity of α-adrenoreceptor subtypes in arteriolar networks of mouse skeletal muscle. Journal of Physiology, 2010, 588, 4261-4274.	2.9	36
49	Regional activation of rapid onset vasodilatation in mouse skeletal muscle: regulation through α-adrenoreceptors. Journal of Physiology, 2010, 588, 3321-3331.	2.9	35
50	The Mouse Cremaster Muscle Preparation for Intravital Imaging of the Microcirculation. Journal of Visualized Experiments, 2011, , .	0.3	35
51	Membrane potential governs calcium influx into microvascular endothelium: integral role for muscarinic receptor activation. Journal of Physiology, 2015, 593, 4531-4548.	2.9	35
52	Calcium and electrical dynamics in lymphatic endothelium. Journal of Physiology, 2017, 595, 7347-7368.	2.9	35
53	Temperature effects on morphological integrity and Ca ²⁺ signaling in freshly isolated murine feed artery endothelial cell tubes. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H773-H783.	3.2	31
54	Advanced age decreases local calcium signaling in endothelium of mouse mesenteric arteries in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1091-H1096.	3.2	30

#	Article	IF	CITATIONS
55	Aging alters reactivity of microvascular resistance networks in mouse gluteus maximus muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H830-H839.	3.2	29
56	Advanced age protects microvascular endothelium from aberrant Ca ²⁺ influx and cell death induced by hydrogen peroxide. Journal of Physiology, 2015, 593, 2155-2169.	2.9	29
57	Microvascular architecture in rat soleus and extensor digitorum longus muscles. Microvascular Research, 1992, 43, 192-204.	2.5	28
58	Histamine inhibits conducted vasodilation through endotheliumâ€derived NO production in arterioles of mouse skeletal muscle. FASEB Journal, 2004, 18, 280-286.	0.5	28
59	Arteriolar smooth muscle Ca2+ dynamics during blood flow control in hamster cheek pouch. Journal of Applied Physiology, 2006, 101, 307-315.	2.5	28
60	Microvessels Promote Motor Nerve Survival and Regeneration Through Local VEGF Release Following Ectopic Reattachment. Microcirculation, 2004, 11, 633-644.	1.8	27
61	Neurovascular Alignment in Adult Mouse Skeletal Muscles. Microcirculation, 2005, 12, 161-167.	1.8	27
62	Coordination of Intercellular <scp><scp>Ca</scp>2+ Signaling in Endothelial Cell Tubes of Mouse Resistance Arteries. Microcirculation, 2012, 19, 757-770.</scp>	1.8	27
63	Calcium and Electrical Signalling along Endothelium of the Resistance Vasculature. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 80-86.	2.5	26
64	Depressed perivascular sensory innervation of mouse mesenteric arteries with advanced age. Journal of Physiology, 2016, 594, 2323-2338.	2.9	26
65	Heterogeneity of Vascular Innervation in Hamster Cheek Pouch and Retractor Muscle. Journal of Vascular Research, 1999, 36, 465-476.	1.4	25
66	Sympathetic Nerves Inhibit Conducted Vasodilatation Along Feed Arteries during Passive Stretch of Hamster Skeletal Muscle. Journal of Physiology, 2003, 552, 273-282.	2.9	25
67	Quantifying perivascular sympathetic innervation: Regional differences in male C57BL/6 mice at 3 and 20 months. Journal of Neuroscience Methods, 2009, 184, 124-128.	2.5	25
68	Attenuation of vasodilatation with skeletal muscle fatigue in hamster retractor. Journal of Physiology, 2000, 524, 929-941.	2.9	24
69	Independence of Connexin Expression and Vasomotor Conduction from Sympathetic Innervation in Hamster Feed Arteries. Microcirculation, 2004, 11, 397-408.	1.8	24
70	Impact of Aging on Calcium Signaling and Membrane Potential in Endothelium of Resistance Arteries: A Role for Mitochondria. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1627-1637.	3.6	24
71	Arterial morphology and blood volumes of rats following 10-14 weeks of tail suspension. Medicine and Science in Sports and Exercise, 1997, 29, 1304-1310.	0.4	23
72	Visualizing calcium responses to acetylcholine convection along endothelium of arteriolar networks in Cx40 ^{BAC} -GCaMP2 transgenic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H794-H802.	3.2	21

#	Article	IF	CITATIONS
73	β1-Integrin Is Essential for Vasoregulation and Smooth Muscle Survival In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2325-2335.	2.4	21
74	Ageing alters perivascular nerve function of mouse mesenteric arteries <i>in vivo</i> . Journal of Physiology, 2013, 591, 1251-1263.	2.9	21
75	Rapid <i>versus</i> slow ascending vasodilatation: intercellular conduction <i>versus</i> flowâ€mediated signalling with tetanic <i>versus</i> rhythmic muscle contractions. Journal of Physiology, 2017, 595, 7149-7165.	2.9	21
76	Spatial Relationships between Neuromuscular Junctions and Microvessels in Hamster Cremaster Muscle. Microvascular Research, 1994, 48, 50-67.	2.5	20
77	Isolation of Microvascular Endothelial Tubes from Mouse Resistance Arteries. Journal of Visualized Experiments, 2013, , e50759.	0.3	19
78	Attenuated sarcomere lengthening of the aged murine left ventricle observed using two-photon fluorescence microscopy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H918-H925.	3.2	19
79	Calcitonin gene-related peptide hyperpolarizes mouse pulmonary artery endothelial tubes through K _{ATP} channel activation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L212-L226.	2.9	18
80	Dantrolene suppresses spontaneous Ca ²⁺ release without altering excitation-contraction coupling in cardiomyocytes of aged mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H818-H829.	3.2	17
81	Biophysical properties of microvascular endothelium: Requirements for initiating and conducting electrical signals. Microcirculation, 2018, 25, e12429.	1.8	17
82	Ischemia–Reperfusion Impairs Ascending Vasodilation in Feed Arteries of Hamster Skeletal Muscle. Microcirculation, 2005, 12, 551-561.	1.8	14
83	Intravital Macrozoom Imaging and Automated Analysis of Endothelial Cell Calcium Signals Coincident with Arteriolar Dilation in Cx40 ^{BAC} CaMP2 Transgenic Mice. Microcirculation, 2011, 18, 331-338.	1.8	14
84	Aging increases capacitance and spontaneous transient outward current amplitude of smooth muscle cells from murine superior epigastric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1512-H1524.	3.2	14
85	Recovery of blood flow regulation in microvascular resistance networks during regeneration of mouse gluteus maximus muscle. Journal of Physiology, 2019, 597, 1401-1417.	2.9	14
86	Female sex and Western-style diet protect mouse resistance arteries during acute oxidative stress. American Journal of Physiology - Cell Physiology, 2020, 318, C627-C639.	4.6	14
87	Evidence for impaired neurovascular transmission in a murine model of Duchenne muscular dystrophy. Journal of Applied Physiology, 2011, 110, 601-609.	2.5	13
88	Differential αâ€adrenergic modulation of rapid onset vasodilatation along resistance networks of skeletal muscle in old <i>versus</i> young mice. Journal of Physiology, 2016, 594, 6987-7004.	2.9	13
89	Increased amplitude of inward rectifier K ⁺ currents with advanced age in smooth muscle cells of murine superior epigastric arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H1203-H1214.	3.2	13
90	Microvascular mechanisms limiting skeletal muscle blood flow with advancing age. Journal of Applied Physiology, 2018, 125, 1851-1859.	2.5	13

#	Article	IF	CITATIONS
91	Advanced age protects resistance arteries of mouse skeletal muscle from oxidative stress through attenuating apoptosis induced by hydrogen peroxide. Journal of Physiology, 2019, 597, 3801-3816.	2.9	13
92	Apoptosis in resistance arteries induced by hydrogen peroxide: greater resilience of endothelium versus smooth muscle. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1625-H1633.	3.2	12
93	Differential hyperpolarization to substance P and calcitonin geneâ€related peptide in smooth muscle versus endothelium of mouse mesenteric artery. Microcirculation, 2021, 28, e12733.	1.8	8
94	Role of Smooth Muscle Activation in Conduction of Vasodilation along Isolated Hamster Feed Arteries. Journal of Vascular Research, 1998, 35, 405-412.	1.4	7
95	Motor nerve topology reflects myocyte morphology in hamster retractor and epitrochlearis muscles. Journal of Morphology, 2000, 246, 103-117.	1.2	7
96	Neurovascular Proximity in the Diaphragm Muscle of Adult Mice. Microcirculation, 2012, 19, 306-315.	1.8	7
97	Gene expression profiles of ion channels and receptors in mouse resistance arteries: Effects of cell type, vascular bed, and age. Microcirculation, 2018, 25, e12452.	1.8	7
98	Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. Journal of Physiology, 2022, 600, 41-60.	2.9	7
99	Functionalizing biomaterials to promote neurovascular regeneration following skeletal muscle injury. American Journal of Physiology - Cell Physiology, 2021, 320, C1099-C1111.	4.6	6
100	Endothelial cells promote smooth muscle cell resilience to H ₂ O ₂ â€induced cell death in mouse cerebral arteries. Acta Physiologica, 2022, 235, e13819.	3.8	6
101	Regulation of Myoendothelial Junction Formation. Circulation Research, 2010, 106, 1014-1016.	4.5	5
102	A Holder and Calibration Chamber for Micropressure Measurements. Microvascular Research, 1994, 48, 403-405.	2.5	4
103	Special Edition of Microcirculation Commemorating the 50th Anniversary of the Microcirculatory Society, Inc Microcirculation, 2005, 12, 1-4.	1.8	4
104	Attenuated rapid onset vasodilation with greater force production in skeletal muscle of caveolin-2 ^{â^'/â^'} mice. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H415-H425.	3.2	4
105	Aging alters spontaneous and neurotransmitterâ€mediated Ca ²⁺ signaling in smooth muscle cells of mouse mesenteric arteries. Microcirculation, 2020, 27, e12607.	1.8	4
106	Frontiers in Microcirculation: Control Processes and Clinical Applications. Microcirculation, 2010, 17, 159-163.	1.8	3
107	Microiontophoresis and Micromanipulation for Intravital Fluorescence Imaging of the Microcirculation. Journal of Visualized Experiments, 2011, , .	0.3	3
	Ion Channels in Control of Placed Flows Flootrical Conduction Along Endethalium of Desistance		

¹⁰⁸ Ion Channels in Control of Blood Flow: Electrical Conduction Along Endothelium of Resistance Arteries. , 2016, , 79-99.

#	Article	IF	CITATIONS
109	Blood flow restriction without sympathetic vasoconstriction in ageing skeletal muscle during exercise. Journal of Physiology, 2014, 592, 4607-4608.	2.9	1
110	Resolution of Ca 2+ dynamics underlying conducted vasodilation: The Ca 2+ wave FASEB Journal, 2006, 20, A277.	0.5	1
111	Comment on Point:Counterpoint "The muscle pump is/is not an important determinant of muscle blood flow during exerciseâ€: Journal of Applied Physiology, 2005, 99, 2451-2451.	2.5	0
112	Enhanced functional sympatholysis through endothelial signalling in healthy young men and women. Journal of Physiology, 2016, 594, 7149-7150.	2.9	0
113	Arteriolar smooth muscle calcium dynamics in hamster cheek pouch in vivo. FASEB Journal, 2006, 20, A273.	0.5	Ο
114	Regional differences in vascular sympathetic innervation are maintained in aging C57Bl/6 mice. FASEB Journal, 2006, 20, A271.	0.5	0
115	A Novel Signaling Pathway for Conducted Vasodilation in Hamster Feed Arteries. FASEB Journal, 2006, 20, A276.	0.5	Ο
116	Connexin isoform expression in microvascular smooth muscle and endothelium. FASEB Journal, 2007, 21, A1217.	0.5	0
117	Neurovascular alignment in mouse diaphragm muscle. FASEB Journal, 2007, 21, A482.	0.5	Ο
118	Calcium waves along arteriolar endothelium enhance conducted vasodilation during blood flow control. FASEB Journal, 2008, 22, .	0.5	0
119	Hypertension compromises functional hyperemia in hamster feed arteries. FASEB Journal, 2008, 22, 122-122.	0.5	Ο
120	Selective functional sympatholysis promotes blood flow distribution to recruited muscle fibers. FASEB Journal, 2009, 23, 948.14.	0.5	0
121	Role for Kv1.3 channels in sympathetic neurovascular transmission. FASEB Journal, 2009, 23, 952.12.	0.5	Ο
122	Fast calcium responses along endothelium of arteriolar networks during blood flow. FASEB Journal, 2009, 23, 948.18.	0.5	0
123	Differences in expression and function of ryanodine receptors between arteries and arterioles in the mouse. FASEB Journal, 2010, 24, 777.5.	0.5	0
124	Functional adrenoreceptor distribution in arteriolar networks of mouse gluteus maximus muscle. FASEB Journal, 2010, 24, 976.5.	0.5	0
125	Distinguishing receptor―versus storeâ€operated calcium entry in arteriolar endothelium. FASEB Journal, 2010, 24, .	0.5	0
126	Tuning electrical conduction along endothelial cell tubes via Ca 2+ â€activated K + channels. FASEB Journal, 2012, 26, 1058.12.	0.5	0

#	Article	IF	CITATIONS
127	Aging differentially alters calcium signals and myogenic tone in murine cremaster muscle feed arteries and downstream arterioles. FASEB Journal, 2012, 26, 861.3.	0.5	0
128	Differential roles for α 1 ―versus α 2 ―adrenoreceptor activation of mouse mesenteric arterial networks in vivo. FASEB Journal, 2012, 26, 853.11.	0.5	0
129	Aging impairs electrical conduction along resistance artery endothelium via enhanced signal dissipation through K Ca channels. FASEB Journal, 2012, 26, 861.2.	0.5	0
130	Aging increases the amplitude of spontaneous transient outward currents in murine resistance artery smooth muscle cells. FASEB Journal, 2013, 27, 679.4.	0.5	0
131	Depolarization of collecting lymphatic endothelium with acetylcholine or TRPV4 activation. FASEB Journal, 2013, 27, 678.3.	0.5	0
132	Altered electrical reactivity of endothelial tubes with aging: Role of mitochondria and Ca 2+ â€activated K + channels. FASEB Journal, 2013, 27, 679.1.	0.5	0
133	Aging alters reactivity of microvascular resistance networks in mouse skeletal muscle. FASEB Journal, 2013, 27, 679.2.	0.5	0
134	Aging attenuates spontaneous endothelial Ca 2+ events with altered perivascular nerve function in mouse mesenteric arteries in vivo. FASEB Journal, 2013, 27, 901.3.	0.5	0
135	Impaired Ca 2+ signaling following acutely elevated glucose in mouse endothelial cell tubes. FASEB Journal, 2013, 27, 678.2.	0.5	0
136	Constitutive activation of αâ€adrenoreceptors with advanced age impairs rapid onset vasodilation: key role for feed arteries (674.6). FASEB Journal, 2014, 28, 674.6.	0.5	0
137	Advanced Age Increases the Amplitude of ATPâ€sensitive K ⁺ Channel Currents in Murine Resistance Artery Smooth Muscle Cells. FASEB Journal, 2015, 29, 786.1.	0.5	0
138	Recovery of Functional Vasodilation During Skeletal Muscle Regeneration. FASEB Journal, 2018, 32, 573.4.	0.5	0
139	Protective Effects of Diet and Sex on Cell Death and Intracellular Calcium in Resistance Arteries during Oxidative Stress. FASEB Journal, 2018, 32, 845.3.	0.5	0
140	Which Comes First: Angiogenesis or Myogenesis Following Punch Biopsy Injury?. FASEB Journal, 2022, 36, .	0.5	0