List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3191110/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Mast Cells: Bridging Host-Microorganism Interactions. Frontiers in Immunology, 2022, 13, 827375.	4.8	0
2	Local induction of bladder Th1 responses to combat urinary tract infections. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
3	The Roles of T cells in Bladder Pathologies. Trends in Immunology, 2021, 42, 248-260.	6.8	12
4	Nasal Immunization With Small Molecule Mast Cell Activators Enhance Immunity to Co-Administered Subunit Immunogens. Frontiers in Immunology, 2021, 12, 730346.	4.8	9
5	Structure, function and pharmacology of human itch GPCRs. Nature, 2021, 600, 170-175.	27.8	101
6	A humanized mouse model to study mast cells mediated cutaneous adverse drug reactions. Journal of Leukocyte Biology, 2020, 107, 797-807.	3.3	29
7	Mast Cells for the Control of Mucosal Immunity. , 2020, , 213-228.		1
8	Th1-Polarized, Dengue Virus-Activated Human Mast Cells Induce Endothelial Transcriptional Activation and Permeability. Viruses, 2020, 12, 1379.	3.3	7
9	A highly polarized TH2 bladder response to infection promotes epithelial repair at the expense of preventing new infections. Nature Immunology, 2020, 21, 671-683.	14.5	36
10	Novel mucosal adjuvant, mastoparan-7, improves cocaine vaccine efficacy. Npj Vaccines, 2020, 5, 12.	6.0	21
11	Platelets trigger perivascular mast cell degranulation to cause inflammatory responses and tissue injury. Science Advances, 2020, 6, eaay6314.	10.3	32
12	Introducing a novel experimental model of bladder transplantation in mice. American Journal of Transplantation, 2020, 20, 3558-3566.	4.7	5
13	Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. Journal of Virology, 2019, 93, .	3.4	9
14	Autoimmune Theories of Chronic Spontaneous Urticaria. Frontiers in Immunology, 2019, 10, 627.	4.8	138
15	ldentification of Novel Mast Cell Activators Using Cell-Based High-Throughput Screening. SLAS Discovery, 2019, 24, 628-640.	2.7	7
16	MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. Science Advances, 2019, 5, eaav0216.	10.3	78
17	Reprograming immunity to food allergens. Journal of Allergy and Clinical Immunology, 2018, 141, 1936-1939.e2.	2.9	4
18	Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science, 2018, 362, .	12.6	56

#	Article	IF	CITATIONS
19	Mast cell activators as novel immune regulators. Current Opinion in Pharmacology, 2018, 41, 89-95.	3.5	23
20	<i>Flavivirus</i> serocomplex cross-reactive immunity is protective by activating heterologous memory CD4 T cells. Science Advances, 2018, 4, eaar4297.	10.3	69
21	In Vitro and In Vivo IgE-/Antigen-Mediated Mast Cell Activation. Methods in Molecular Biology, 2018, 1799, 71-80.	0.9	5
22	IL-27 Facilitates Skin Wound Healing through Induction of Epidermal Proliferation and Host Defense. Journal of Investigative Dermatology, 2017, 137, 1166-1175.	0.7	45
23	Collaboration between Distinct Rab Small GTPase Trafficking Circuits Mediates Bacterial Clearance from the Bladder Epithelium. Cell Host and Microbe, 2017, 22, 330-342.e4.	11.0	22
24	Mast Cells: Master Drivers of Immune Responses against Pathogens. , 2017, , 273-288.		0
25	The multiple antibacterial activities of the bladder epithelium. Annals of Translational Medicine, 2017, 5, 35-35.	1.7	30
26	Innate Immune Responses to Bladder Infection. , 2016, , 555-564.		0
27	Why Serological Responses during Cystitis are Limited. Pathogens, 2016, 5, 19.	2.8	6
28	Loss of Bladder Epithelium Induced by Cytolytic Mast Cell Granules. Immunity, 2016, 45, 1258-1269.	14.3	70
29	Innate Immune Responses to Bladder Infection. Microbiology Spectrum, 2016, 4, .	3.0	36
30	Ubiquitination of Innate Immune Regulator TRAF3 Orchestrates Expulsion of Intracellular Bacteria by Exocyst Complex. Immunity, 2016, 45, 94-105.	14.3	33
31	Mast cell desensitization inhibits calcium flux and aberrantly remodels actin. Journal of Clinical Investigation, 2016, 126, 4103-4118.	8.2	70
32	How mast cells make decisions. Journal of Clinical Investigation, 2016, 126, 3735-3738.	8.2	16
33	A TRP Channel Senses Lysosome Neutralization by Pathogens to Trigger Their Expulsion. Cell, 2015, 161, 1306-1319.	28.9	227
34	Complete Genome Sequence of Uropathogenic Escherichia coli Strain CI5. Genome Announcements, 2015, 3, .	0.8	5
35	The nature of immune responses to urinary tract infections. Nature Reviews Immunology, 2015, 15, 655-663.	22.7	233
36	Mast cell mediator responses and their suppression by pathogenic and commensal microorganisms. Molecular Immunology, 2015, 63, 74-79.	2.2	15

#	Article	IF	CITATIONS
37	S1P-Dependent Trafficking of Intracellular Yersinia pestis through Lymph Nodes Establishes Buboes and Systemic Infection. Immunity, 2014, 41, 440-450.	14.3	51
38	Peeing Pentraxins. Immunity, 2014, 40, 460-462.	14.3	1
39	Cromolyn ameliorates acute and chronic injury in a rat lung transplant model. Journal of Heart and Lung Transplantation, 2014, 33, 749-757.	0.6	12
40	Salmonella Typhimurium Impedes Innate Immunity With a Mast Cell-Suppressing Tyrosine Phosphatase Sptp. Journal of Allergy and Clinical Immunology, 2014, 133, AB247.	2.9	0
41	Kidney α–intercalated cells and lipocalin 2: defending the urinary tract. Journal of Clinical Investigation, 2014, 124, 2844-2846.	8.2	2
42	A mastoparan-derived peptide has broad-spectrum antiviral activity against enveloped viruses. Peptides, 2013, 48, 96-105.	2.4	46
43	Innate Immunity and Its Regulation by Mast Cells. Journal of Immunology, 2013, 190, 4458-4463.	0.8	190
44	Salmonella Typhimurium Impedes Innate Immunity with a Mast-Cell-Suppressing Protein Tyrosine Phosphatase, SptP. Immunity, 2013, 39, 1108-1120.	14.3	52
45	Mast Cell Interleukin-10 Drives Localized Tolerance in Chronic Bladder Infection. Immunity, 2013, 38, 349-359.	14.3	137
46	A comparison of non-toxin vaccine adjuvants for their ability to enhance the immunogenicity of nasally-administered anthrax recombinant protective antigen. Vaccine, 2013, 31, 1480-1489.	3.8	27
47	Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis. Nature Reviews Microbiology, 2013, 11, 420-426.	28.6	62
48	Interplay between vesicoureteric reflux and kidney infection in the development of reflux nephropathy in mice. DMM Disease Models and Mechanisms, 2013, 6, 934-41.	2.4	24
49	Intestinal Mast Cells Mediate Gut Injury and Systemic Inflammation in a Rat Model of Deep Hypothermic Circulatory Arrest*. Critical Care Medicine, 2013, 41, e200-e210.	0.9	40
50	Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. ELife, 2013, 2, e00481.	6.0	146
51	Synthetic mast-cell granules as adjuvants to promote and polarize immunity in lymph nodes. Nature Materials, 2012, 11, 250-257.	27.5	89
52	Plasticity in mast cell responses during bacterial infections. Current Opinion in Microbiology, 2012, 15, 78-84.	5.1	38
53	Stable Dry Powder Formulation for Nasal Delivery of Anthrax Vaccine. Journal of Pharmaceutical Sciences, 2012, 101, 31-47.	3.3	82
54	Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9190-9195.	7.1	173

#	Article	IF	CITATIONS
55	Mast cell modulation of the vascular and lymphatic endothelium. Blood, 2011, 118, 5383-5393.	1.4	155
56	c-Kit Is Essential for Alveolar Maintenance and Protection from Emphysema-like Disease in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1644-1652.	5.6	31
57	The Mast Cell in Innate and Adaptive Immunity. Advances in Experimental Medicine and Biology, 2011, 716, 162-185.	1.6	65
58	Mucosal Targeting of a BoNT/A Subunit Vaccine Adjuvanted with a Mast Cell Activator Enhances Induction of BoNT/A Neutralizing Antibodies in Rabbits. PLoS ONE, 2011, 6, e16532.	2.5	36
59	Mast cell-orchestrated immunity to pathogens. Nature Reviews Immunology, 2010, 10, 440-452.	22.7	800
60	Role of Mast Cells in Inflammatory Bowel Disease and Inflammation-Associated Colorectal Neoplasia in IL-10-Deficient Mice. PLoS ONE, 2010, 5, e12220.	2.5	63
61	New roles for mast cells in pathogen defense and allergic disease. Discovery Medicine, 2010, 9, 79-83.	0.5	16
62	The expanding roles of caveolin proteins in microbial pathogenesis. Communicative and Integrative Biology, 2009, 2, 535-537.	1.4	18
63	TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14966-14971.	7.1	124
64	Counteracting Signaling Activities in Lipid Rafts Associated with the Invasion of Lung Epithelial Cells by Pseudomonas aeruginosa. Journal of Biological Chemistry, 2009, 284, 9955-9964.	3.4	41
65	Mast cell–derived particles deliver peripheral signals to remote lymph nodes. Journal of Experimental Medicine, 2009, 206, 2455-2467.	8.5	151
66	Involvement of dynamin-2 in formation of discoid vesicles in urinary bladder umbrella cells. Cell and Tissue Research, 2009, 337, 91-102.	2.9	14
67	Salmonella disrupts lymph node architecture by TLR4-mediated suppression of homeostatic chemokines. Nature Medicine, 2009, 15, 1259-1265.	30.7	65
68	New roles for mast cells in modulating allergic reactions and immunity against pathogens. Current Opinion in Immunology, 2009, 21, 679-686.	5.5	75
69	Mast Cells Augment Adaptive Immunity by Orchestrating Dendritic Cell Trafficking through Infected Tissues. Cell Host and Microbe, 2009, 6, 331-342.	11.0	113
70	The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine, 2009, 27, 3544-3552.	3.8	72
71	Mast cell activators: a new class of highly effective vaccine adjuvants. Nature Medicine, 2008, 14, 536-541.	30.7	192
72	TLR-mediated immune responses in the urinary tract. Current Opinion in Microbiology, 2008, 11, 66-73.	5.1	70

#	Article	IF	CITATIONS
73	A Novel TLR4-Mediated Signaling Pathway Leading to IL-6 Responses in Human Bladder Epithelial Cells. PLoS Pathogens, 2007, 3, e60.	4.7	151
74	Attenuated virulence of a <i>Francisella</i> mutant lacking the lipid A 4′-phosphatase. Proceedings of the United States of America, 2007, 104, 4136-4141.	7.1	120
75	TLR4-Initiated and cAMP-Mediated Abrogation of Bacterial Invasion of the Bladder. Cell Host and Microbe, 2007, 1, 287-298.	11.0	108
76	Cyclic AMP–regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nature Medicine, 2007, 13, 625-630.	30.7	187
77	Disruption of a Nonribosomal Peptide Synthetase in Aspergillus fumigatus Eliminates Gliotoxin Production. Eukaryotic Cell, 2006, 5, 972-980.	3.4	208
78	Harboring of Particulate Allergens within Secretory Compartments by Mast Cells following IgE/FclµRI-Lipid Raft-Mediated Phagocytosis. Journal of Immunology, 2006, 177, 5791-5800.	0.8	18
79	Bacterial Penetration of the Mucosal Barrier by Targeting Lipid Rafts. Journal of Investigative Medicine, 2005, 53, 318-321.	1.6	26
80	Chapter 4 Lipid Raft-Mediated Entry of Bacteria into Host Cells. Advances in Molecular and Cell Biology, 2005, 36, 79-88.	0.1	1
81	The role of lipid rafts in the pathogenesis of bacterial infections. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1746, 305-313.	4.1	106
82	The Distinct Binding Specificities Exhibited by Enterobacterial Type 1 Fimbriae Are Determined by Their Fimbrial Shafts. Journal of Biological Chemistry, 2005, 280, 37707-37716.	3.4	69
83	Adhesion of Bacteria to Mucosal Surfaces. , 2005, , 35-48.		6
84	Pseudomonas Invasion of Type I Pneumocytes Is Dependent on the Expression and Phosphorylation of Caveolin-2. Journal of Biological Chemistry, 2005, 280, 4864-4872.	3.4	67
85	Bacterial Penetration of Bladder Epithelium through Lipid Rafts. Journal of Biological Chemistry, 2004, 279, 18944-18951.	3.4	160
86	Contribution of mast cells to bacterial clearance and their proliferation during experimental cystitis induced by type 1 fimbriated E. coli. Immunology Letters, 2004, 91, 103-111.	2.5	48
87	Mast cell–derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nature Immunology, 2003, 4, 1199-1205.	14.5	290
88	Mast Cell Activation by <i>Mycobacterium tuberculosis</i> : Mediator Release and Role of CD48. Journal of Immunology, 2003, 170, 5590-5596.	0.8	88
89	The role of mast cells in host defense and their subversion by bacterial pathogens. Trends in Immunology, 2002, 23, 151-158.	6.8	135
90	Microbial entry through caveolae: variations on a theme. Cellular Microbiology, 2002, 4, 783-791.	2.1	143

#	Article	IF	CITATIONS
91	Studies of the multifaceted mast cell response to bacteria. Current Opinion in Microbiology, 2001, 4, 260-266.	5.1	18
92	Interaction of Bordetella pertussis with mast cells, modulation of cytokine secretion by pertussis toxin. Cellular Microbiology, 2001, 3, 181-188.	2.1	40
93	Caveolae as portals of entry for microbes. Microbes and Infection, 2001, 3, 755-761.	1.9	112
94	Mast cell modulation of immune responses to bacteria. Immunological Reviews, 2001, 179, 16-24.	6.0	132
95	Glycosylphosphatidylinositol-anchored receptor-mediated bacterial endocytosis. FEMS Microbiology Letters, 2001, 197, 131-138.	1.8	39
96	CELL BIOLOGY: CaveolaeNot Just Craters in the Cellular Landscape. Science, 2001, 293, 1447-1448.	12.6	71
97	Glycosylphosphatidylinositol-anchored receptor-mediated bacterial endocytosis. FEMS Microbiology Letters, 2001, 197, 131-138.	1.8	3
98	Role of mast cell leukotrienes in neutrophil recruitment and bacterial clearance in infectious peritonitis. Journal of Leukocyte Biology, 2000, 67, 841-846.	3.3	168
99	Involvement of Cellular Caveolae in Bacterial Entry into Mast Cells. Science, 2000, 289, 785-788.	12.6	295
100	Role of Bacterial Lectins in Urinary Tract Infections. , 2000, 485, 183-192.		16
101	Internalization of FimH+ Â <i>Escherichia coli</i> by the human mast cell line (HMC-1 5C6) involves protein kinase C. Journal of Leukocyte Biology, 1999, 66, 1031-1038.	3.3	19
102	Molecular Basis for the Enterocyte Tropism Exhibited bySalmonella typhimurium Type 1 Fimbriae. Journal of Biological Chemistry, 1999, 274, 5797-5809.	3.4	63
103	Inability of encapsulated <i>Klebsiella pneumoniae</i> to assemble functional type 1 fimbriae on their surface. FEMS Microbiology Letters, 1999, 179, 123-130.	1.8	33
104	Bacteria-Host Cell Interaction Mediated by Cellular Cholesterol/Glycolipid-Enriched Microdomains. Bioscience Reports, 1999, 19, 421-432.	2.4	23
105	Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Medicine, 1998, 4, 615-618.	30.7	635
106	Clinical implications of mast cell-bacteria interaction. Journal of Molecular Medicine, 1998, 76, 617-623.	3.9	41
107	Fimbriae-mediated host-pathogen cross-talk. Current Opinion in Microbiology, 1998, 1, 75-81.	5.1	54
108	Mast cells and basophils in innate immunity. Seminars in Immunology, 1998, 10, 373-381.	5.6	72

#	Article	IF	CITATIONS
109	Phagocytic and Tumor Necrosis Factor Alpha Response of Human Mast Cells following Exposure to Gram-Negative and Gram-Positive Bacteria. Infection and Immunity, 1998, 66, 6030-6034.	2.2	101
110	Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature, 1997, 389, 636-639.	27.8	287
111	Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature, 1996, 381, 77-80.	27.8	1,064
112	BACTERIA–MAST CELL INTERACTIONS IN INFLAMMATORY DISEASE. American Journal of Therapeutics, 1995, 2, 787-792.	0.9	17
113	[3] Interaction of bacteria with mast cells. Methods in Enzymology, 1995, 253, 27-43.	1.0	24
114	Pilus and nonpilus bacterial adhesins: Assembly and function in cell recognition. Cell, 1993, 73, 887-901.	28.9	450
115	Isolation and characterization of a 180-kiloDalton salivary glycoprotein which mediates the attachment of Actinomyces naeslundii to human buccal epithelial cells. Journal of Periodontal Research, 1991, 26, 97-106.	2.7	20
116	Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae. Nature, 1988, 336, 682-684.	27.8	210