
Cosmin Mihai Miritoiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic behaviour of composites reinforced with needles from fir trees. MATEC Web of Conferences, 2021, 343, 01001.	0.2	0
2	About the Mechanical Properties for a Type of Green Composites with Hybrid Dammar/Sandarac Matrix and Natural Reinforcements. Macromolecular Symposia, 2021, 396, 2000305.	0.7	0
3	Considerations Regarding the Dynamic Behavior of Composite Sandwich Bars with Polystyrene Core Reinforced with Fiber-Glass. Applied Mechanics and Materials, 2020, 896, 265-269.	0.2	0
4	Researches Regarding the Mechanical Properties of a NewHybrid Vegetal Resin. Materiale Plastice, 2020, 57, 37-45.	0.8	3
5	Modeling of Dynamic Behavior of a Spur Gear. , 2020, , 559-564.		0
6	A Study of the Mechanical Behavior of a Car Part Realized from Epoxy Resin Reinforced with Cotton Woven. , 2020, , 550-558.		0
7	A Study Regarding the Mechanical Properties of a Hybrid Matrix with Various Volume Proportions of Dammar. Materiale Plastice, 2020, 57, 133-140.	0.8	0
8	Comparisons between some composite materials reinforced with hemp fibers. Materials Today: Proceedings, 2019, 12, 499-507.	1.8	5
9	Study about the Influence of Two-Steps Sintering (TTS) Route for an Alloy Based on Titanium. Applied Mechanics and Materials, 2018, 880, 256-261.	0.2	0
10	An Experimental Study Regarding the Vibratory Behaviour for Some Textile Composites. Applied Mechanics and Materials, 2018, 880, 267-272.	0.2	0
11	The Vibration Study of DAMMAR Based Composite Bars by Using a New Euler-Bernoulli Theory. Materiale Plastice, 2017, 54, 1-7.	0.8	3
12	The Stress Field at an Axial Eccentrical Fatigue Loading – Influenced by the Test Temperature. ACTA Universitatis Cibiniensis, 2017, 69, 31-39.	0.1	0
13	Fnk Model of Cracking Rate Calculus for a Variable Asymmetry Coefficient. ACTA Universitatis Cibiniensis, 2017, 69, 72-81.	0.1	0
14	Study about the Vehicle Orientation on the Trajectory during Transient Movements. Applied Mechanics and Materials, 2016, 822, 68-73.	0.2	0
15	The Influence of Two Extra Carbon Fiber Layers over the Damping Properties for Sandwich Bars with Polypropylene Honeycomb Core. Applied Mechanics and Materials, 2016, 823, 495-500.	0.2	0
16	Experimental Procedure Used To Determine The Flexural Rigidity For Composite Sandwich Bars With Various Thickness Values. ACTA Universitatis Cibiniensis, 2015, 67, 7-12.	0.1	0
17	A Comparison of Composite Bars against Metallic Bars from the Mass per Unit Length Point of View. Key Engineering Materials, 2014, 601, 58-61.	0.4	0
18	A simple but accurate device and method for bending and stress measurement of metallic structures. IOSR Journal of Engineering, 2012, 02, 1334-1339.	0.1	0

#	Article	IF	CITATIONS
19	Mechanical Loading of R-R-T Dyade. Advanced Materials Research, 0, 463-464, 1272-1276.	0.3	0
20	Experimental Determinations of the Eigenmodes for Sandwich Bars with Different Core Reinforced with Metal Fabric. Applied Mechanics and Materials, 0, 658, 255-260.	0.2	3
21	Experimental Determinations and Comparative Studies of the Stiffness for Some Sandwich Bars Reinforced with Metal Fabric. Applied Mechanics and Materials, 0, 658, 249-254.	0.2	1
22	Experimental Determinations of the Damping Factor for Composite Sandwich Bars Reinforced with Two Carbon Fiber Layers. Applied Mechanics and Materials, 0, 801, 182-187.	0.2	1
23	The Damping Study for Dammar Composites Reinforced with Natural Fibers. Applied Mechanics and Materials, 0, 801, 188-193.	0.2	0
24	Modal Parameters Identification for some Sandwich Bars Reinforced with Fiber-Glass. Advanced Engineering Forum, 0, 13, 148-153.	0.3	1
25	A Comparison between a Composite Sandwich Bar with Polypropylene Honeycomb Core Reinforced with Steel Wire Mesh and Metallic Beams with Various Transversal Sections. Applied Mechanics and Materials, 0, 822, 375-380.	0.2	0
26	The Reinforcement Effect of Two Extra Carbon Fiber Layers on the Flexural Rigidity and Young Modulus for Sandwich Bars with Honeycomb Core. Applied Mechanics and Materials, 0, 823, 501-506.	0.2	0
27	The Crack Length Growth – A Fracture Parameter in a Stainless Steel Influenced by the Loading Test. Applied Mechanics and Materials, 0, 823, 489-494.	0.2	2
28	The NASGRO Method - Comparison Model for the Crack Growth Rate Calculus. Applied Mechanics and Materials, 0, 880, 53-62.	0.2	0
29	On the Surface Roughness for the Dry Superfinishing Process of Carbide Inserts. Advanced Engineering Forum, 0, 34, 40-45.	0.3	0
30	About the Static Mechanical Properties of Epoxy/Hemp Composites. Applied Mechanics and Materials, 0, 896, 321-326.	0.2	0
31	Researches about the Dynamic Behavior of Green Composites Reinforced with Rush and Bulrush. Advanced Engineering Forum, 0, 42, 24-29.	0.3	0
32	Considerations on Computational Accuracy of the Solution for a Partial Differential Equation. Applied Mechanics and Materials, 0, 896, 59-66.	0.2	2