Katrianne Lehtipalo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190177/publications.pdf

Version: 2024-02-01

108 papers 10,927 citations

50244 46 h-index 99 g-index

164 all docs

164 docs citations

times ranked

164

4960 citing authors

#	Article	IF	CITATIONS
1	Towards a concentration closure of sub-6 nm aerosol particles and sub-3 nm atmospheric clusters. Journal of Aerosol Science, 2022, 159, 105878.	1.8	9
2	Combining instrument inversions for sub-10 nm aerosol number size-distribution measurements. Journal of Aerosol Science, 2022, 159, 105862.	1.8	9
3	The standard operating procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter. Journal of Aerosol Science, 2022, 159, 105896.	1.8	11
4	Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions. Journal of Aerosol Science, 2022, 161, 105945.	1.8	3
5	Tropical and Boreal Forest – Atmosphere Interactions: A Review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 74, 24.	0.8	27
6	Survival of newly formed particles in haze conditions. Environmental Science Atmospheres, 2022, 2, 491-499.	0.9	8
7	Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest. Atmospheric Chemistry and Physics, 2022, 22, 2237-2254.	1.9	6
8	What controls the observed size-dependency of the growth rates of sub-10 nm atmospheric particles?. Environmental Science Atmospheres, 2022, 2, 449-468.	0.9	5
9	An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom. Atmospheric Chemistry and Physics, 2022, 22, 6365-6391.	1.9	6
10	Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature, 2022, 605, 483-489.	13.7	26
11	Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 2021, 14, 4-9.	5.4	40
12	Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method. Aerosol Science and Technology, 2021, 55, 231-242.	1.5	18
13	Long-term measurement of sub-3 nm particles and their precursor gases in the boreal forest. Atmospheric Chemistry and Physics, 2021, 21, 695-715.	1.9	14
14	Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry. Environmental Science Atmospheres, 2021, 1, 434-448.	0.9	10
15	Role of iodine oxoacids in atmospheric aerosol nucleation. Science, 2021, 371, 589-595.	6.0	94
16	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing Newâ€Particle Formation in Beijing. Geophysical Research Letters, 2021, 48, e2020GL091944.	1.5	53
17	Towards understanding the characteristics of new particle formation in the Eastern Mediterranean. Atmospheric Chemistry and Physics, 2021, 21, 9223-9251.	1.9	19
18	Zeppelin-led study on the onset of new particle formation in the planetary boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 12649-12663.	1.9	9

#	Article	IF	CITATIONS
19	The driving factors of new particle formation and growth in the polluted boundary layer. Atmospheric Chemistry and Physics, 2021, 21, 14275-14291.	1.9	38
20	Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in northern Italy. Environmental Science Atmospheres, 2021, 1, 214-227.	0.9	12
21	Effects of different correction algorithms on absorption coefficient – a comparison of three optical absorption photometers at a boreal forest site. Atmospheric Measurement Techniques, 2021, 14, 6419-6441.	1.2	8
22	Lowâ€Volatility Vapors and New Particle Formation Over the Southern Ocean During the Antarctic Circumnavigation Expedition. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035126.	1.2	14
23	Chemical composition of nanoparticles from & amp;lt;i& amp;gt; \hat{l} ± & amp;lt;/i& amp;gt;-pinene nucleation and the influence of isoprene and relative humidity at low temperature. Atmospheric Chemistry and Physics, 2021, 21, 17099-17114.	1.9	12
24	Wintertime subarctic new particle formation from Kola Peninsula sulfur emissions. Atmospheric Chemistry and Physics, 2021, 21, 17559-17576.	1.9	9
25	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
26	Size-dependent influence of NO \langle sub \rangle x \langle sub \rangle on the growth rates of organic aerosol particles. Science Advances, 2020, 6, eaay4945.	4.7	61
27	Overview of measurements and current instrumentation for 1–10Ânm aerosol particle number size distributions. Journal of Aerosol Science, 2020, 148, 105584.	1.8	58
28	Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds. Environmental Science & Environmental Scie	4.6	66
29	Enhanced growth rate of atmospheric particles from sulfuric acid. Atmospheric Chemistry and Physics, 2020, 20, 7359-7372.	1.9	58
30	Formation and growth of sub-3-nm aerosol particles in experimental chambers. Nature Protocols, 2020, 15, 1013-1040.	5.5	49
31	Molecular understanding of the suppression of new-particle formation by isoprene. Atmospheric Chemistry and Physics, 2020, 20, 11809-11821.	1.9	49
32	Molecular understanding of new-particle formation from <i>α</i> -pinene between â^'50 and +25〉°C. Atmospheric Chemistry and Physics, 2020, 20, 9183-9207.	1.9	68
33	Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-like Aerosols and Their Climate Effects (ACE-SPACE). Bulletin of the American Meteorological Society, 2019, 100, 2260-2283.	1.7	71
34	New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7098-7146.	1.2	185
35	Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between â^'50 °C and +25 °C. Environmental Science & Environmen	4.6	32
36	Vertical profiles of sub-3 nm particles over the boreal forest. Atmospheric Chemistry and Physics, 2019, 19, 4127-4138.	1.9	20

#	Article	IF	CITATIONS
37	Formation of Highly Oxygenated Organic Molecules from α-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development. ACS Earth and Space Chemistry, 2019, 3, 873-883.	1.2	52
38	Measurement–model comparison of stabilized Criegee intermediateÂand highly oxygenated molecule productionÂinÂtheÂCLOUDÂchamber. Atmospheric Chemistry and Physics, 2018, 18, 2363-2380.	1.9	21
39	New particle formation in the sulfuric acid–dimethylamine–water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model. Atmospheric Chemistry and Physics, 2018, 18, 845-863.	1.9	92
40	Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation. Atmospheric Chemistry and Physics, 2018, 18, 65-79.	1.9	56
41	Observations of biogenic ion-induced cluster formation in the atmosphere. Science Advances, 2018, 4, eaar5218.	4.7	64
42	Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors. Science Advances, 2018, 4, eaau5363.	4.7	164
43	The role of H& t;sub>2& t;/sub>SO& t;sub>4& t;/sub>-NH& t;sub>-NH& t;sub>-NH&	amp;gt;38	kamp;lt;/sub
44	Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9122-9127.	3.3	118
45	First measurements of the number size distribution of 1–2Ânm aerosol particles released from manufacturing processes in a cleanroom environment. Aerosol Science and Technology, 2017, 51, 685-693.	1.5	12
46	Solar eclipse demonstrating the importance of photochemistry in new particle formation. Scientific Reports, 2017, 7, 45707.	1.6	29
47	Causes and importance of new particle formation in the presentâ€day and preindustrial atmospheres. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8739-8760.	1.2	198
48	The role of ions in new particle formation in the CLOUD chamber. Atmospheric Chemistry and Physics, 2017, 17, 15181-15197.	1.9	50
49	Measurements of sub-3†nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities. Atmospheric Chemistry and Physics, 2017, 17, 2163-2187.	1.9	71
50	Long-term analysis of clear-sky new particle formation events and nonevents in HyytiÃÞĀÞAtmospheric Chemistry and Physics, 2017, 17, 6227-6241.	1.9	84
51	A new high-transmission inlet for the Caltech nano-RDMA for size distribution measurements of sub-3†nm ions at ambient concentrations. Atmospheric Measurement Techniques, 2016, 9, 2709-2720.	1.2	14
52	Operation of the Airmodus All nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system. Atmospheric Measurement Techniques, 2016, 9, 2977-2988.	1.2	35
53	Effect of ions on sulfuric acidâ€water binary particle formation: 2. Experimental data and comparison with QCâ€normalized classical nucleation theory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1752-1775.	1.2	99
54	Comparison of the SAWNUC model with CLOUD measurements of sulphuric acidâ€water nucleation. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12401-12414.	1.2	16

#	Article	IF	CITATIONS
55	Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3036-3049.	1.2	17
56	Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,377.	1.2	71
57	The role of low-volatility organic compounds in initial particle growth in the atmosphere. Nature, 2016, 533, 527-531.	13.7	540
58	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528
59	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3. 3	107
60	Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber. Aerosol Science and Technology, 2016, 50, 1017-1032.	1.5	13
61	Global atmospheric particle formation from CERN CLOUD measurements. Science, 2016, 354, 1119-1124.	6.0	289
62	The effect of acid–base clustering and ions on the growth of atmospheric nano-particles. Nature Communications, 2016, 7, 11594.	5 . 8	116
63	A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations. Atmospheric Chemistry and Physics, 2016, 16, 1955-1970.	1.9	9
64	Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD. Atmospheric Chemistry and Physics, 2016, 16, 13601-13618.	1.9	24
65	High concentrations of sub-3nm clusters and frequent new particle formation observed in the Po Valley, Italy, during the PEGASOS 2012 campaign. Atmospheric Chemistry and Physics, 2016, 16, 1919-1935.	1.9	25
66	Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments. Atmospheric Chemistry and Physics, 2016, 16, 293-304.	1.9	29
67	Growth of atmospheric clusters involving cluster–cluster collisions: comparison of different growth rate methods. Atmospheric Chemistry and Physics, 2016, 16, 5545-5560.	1.9	16
68	The versatile size analyzing nuclei counter (vSANC). Aerosol Science and Technology, 2016, 50, 947-958.	1.5	7
69	Heterogeneous Nucleation onto Ions and Neutralized Ions: Insights into Sign-Preference. Journal of Physical Chemistry C, 2016, 120, 7444-7450.	1.5	45
70	Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere. Atmospheric Chemistry and Physics, 2015, 15, 3413-3428.	1.9	42
71	Experimental investigation of ion–ion recombination under atmospheric conditions. Atmospheric Chemistry and Physics, 2015, 15, 7203-7216.	1.9	46
72	Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	1.9	17

#	Article	IF	CITATIONS
73	Technical Note: Using DEG-CPCs at upper tropospheric temperatures. Atmospheric Chemistry and Physics, 2015, 15, 7547-7555.	1.9	11
74	On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation. Atmospheric Chemistry and Physics, 2015, 15, 55-78.	1.9	84
75	Sulphuric acid and aerosol particle production in the vicinity of an oil refinery. Atmospheric Environment, 2015, 119, 156-166.	1.9	29
76	Sizing of neutral sub 3nm tungsten oxide clusters using Airmodus Particle Size Magnifier. Journal of Aerosol Science, 2015, 87, 53-62.	1.8	37
77	Sub-3 nm particle size and composition dependent response of a nano-CPC battery. Atmospheric Measurement Techniques, 2014, 7, 689-700.	1.2	73
78	Insight into Acid–Base Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters. Environmental Science & Environmental Science & 13675-13684.	4.6	51
79	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	6.0	456
80	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
81	Growth rates of atmospheric molecular clusters based on appearance times and collision–evaporation fluxes: Growth by monomers. Journal of Aerosol Science, 2014, 78, 55-70.	1.8	20
82	Trends in new particle formation in eastern Lapland, Finland: effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 2014, 14, 4383-4396.	1.9	36
83	Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere. Nature, 2013, 502, 359-363.	13.7	774
84	Direct Observations of Atmospheric Aerosol Nucleation. Science, 2013, 339, 943-946.	6.0	876
85	The particle size magnifier closing the gap between measurement of molecules, molecular clusters and aerosol particles. , $2013, $, .		0
86	lon generation and CPC detection efficiency studies in sub 3-nm size range. , 2013, , .		0
87	Laboratory characterization of a size-resolved CPC battery to infer the composition of freshly formed atmospheric nuclei. , 2013 , , .		0
88	Characterization of diethylene glycol-condensation particle counters for detection of sub-3 nm particles. , 2013, , .		2
89	Sulphur dioxide and sulphuric acid concentrations in the vicinity of Kilpilahti industrial area. , $2013, , .$		0
90	Performance of diethylene glycol-based particle counters in the sub-3 nm size range. Atmospheric Measurement Techniques, 2013, 6, 1793-1804.	1.2	63

#	Article	IF	Citations
91	Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range. Aerosol Science and Technology, 2013, 47, 556-563.	1.5	70
92	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
93	Estimating the contribution of ion–ion recombination to sub-2 nm cluster concentrations from atmospheric measurements. Atmospheric Chemistry and Physics, 2013, 13, 11391-11401.	1.9	25
94	Evolution of particle composition in CLOUD nucleation experiments. Atmospheric Chemistry and Physics, 2013, 13, 5587-5600.	1.9	33
95	Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 2012, 7, 1651-1667.	5.5	435
96	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114
97	Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest. Atmospheric Chemistry and Physics, 2011, 11, 13269-13285.	1.9	121
98	Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations. Atmospheric Chemistry and Physics, 2011, 11, 3865-3878.	1.9	392
99	Observations of Nano-CN in the Nocturnal Boreal Forest. Aerosol Science and Technology, 2011, 45, 499-509.	1.5	43
100	Atmospheric ions and nucleation: a review of observations. Atmospheric Chemistry and Physics, 2011, 11, 767-798.	1.9	228
101	Particle Size Magnifier for Nano-CN Detection. Aerosol Science and Technology, 2011, 45, 533-542.	1.5	283
102	Intercomparison of air ion spectrometers: an evaluation of results in varying conditions. Atmospheric Measurement Techniques, 2011, 4, 805-822.	1.2	34
103	EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.	1.9	248
104	Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmospheric Chemistry and Physics, 2010, 10, 7009-7016.	1.9	42
105	Laboratory Verification of PH-CPC's Ability to Monitor Atmospheric Sub-3 nm Clusters. Aerosol Science and Technology, 2009, 43, 126-135.	1.5	80
106	Analysis of atmospheric neutral and charged molecular clusters in boreal forest using pulse-height CPC. Atmospheric Chemistry and Physics, 2009, 9, 4177-4184.	1.9	59
107	Results of the first air ion spectrometer calibration and intercomparison workshop. Atmospheric Chemistry and Physics, 2009, 9, 141-154.	1.9	85
108	Applicability of condensation particle counters to measure atmospheric clusters. Atmospheric Chemistry and Physics, 2008, 8, 4049-4060.	1.9	74