
Christopher J Kristich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3190044/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 2015, 526, 719-722.	27.8	332
2	Esp-Independent Biofilm Formation by Enterococcus faecalis. Journal of Bacteriology, 2004, 186, 154-163.	2.2	244
3	Development of a host-genotype-independent counterselectable marker and a high-frequency conjugative delivery system and their use in genetic analysis of Enterococcus faecalis. Plasmid, 2007, 57, 131-144.	1.4	172
4	A eukaryotic-type Ser/Thr kinase in <i>Enterococcus faecalis</i> mediates antimicrobial resistance and intestinal persistence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3508-3513.	7.1	138
5	Development and Use of an Efficient System for Random <i>mariner</i> Transposon Mutagenesis To Identify Novel Genetic Determinants of Biofilm Formation in the Core <i>Enterococcus faecalis</i> Genome. Applied and Environmental Microbiology, 2008, 74, 3377-3386.	3.1	95
6	IreB, a Ser/Thr Kinase Substrate, Influences Antimicrobial Resistance in Enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 2013, 57, 6179-6186.	3.2	61
7	Reciprocal Regulation of Cephalosporin Resistance in Enterococcus faecalis. MBio, 2011, 2, e00199-11.	4.1	60
8	Oxidative Stress Enhances Cephalosporin Resistance of Enterococcus faecalis through Activation of a Two-Component Signaling System. Antimicrobial Agents and Chemotherapy, 2015, 59, 159-169.	3.2	47
9	Requirement of the CroRS Two-Component System for Resistance to Cell Wall-Targeting Antimicrobials in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	37
10	Functional Dissection of the CroRS Two-Component System Required for Resistance to Cell Wall Stressors in Enterococcus faecalis. Journal of Bacteriology, 2016, 198, 1326-1336.	2.2	32
11	Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci. Infection and Immunity, 2018, 86, .	2.2	31
12	Mutations in the β Subunit of RNA Polymerase Alter Intrinsic Cephalosporin Resistance in Enterococci. Antimicrobial Agents and Chemotherapy, 2012, 56, 2022-2027.	3.2	29
13	Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis. Journal of Bacteriology, 2017, 199, .	2.2	26
14	Convergence of PASTA Kinase and Two-Component Signaling in Response to Cell Wall Stress in Enterococcus faecalis. Journal of Bacteriology, 2018, 200, .	2.2	26
15	Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract. Infection and Immunity, 2018, 86, .	2.2	25
16	Colonization of the mammalian intestinal tract by enterococci. Current Opinion in Microbiology, 2019, 47, 26-31.	5.1	24
17	Genetic Basis for Vancomycin-Enhanced Cephalosporin Susceptibility in Vancomycin-Resistant Enterococci Revealed Using Counterselection with Dominant-Negative Thymidylate Synthase. Antimicrobial Agents and Chemotherapy, 2014, 58, 1556-1564.	3.2	21
18	Multiple Low-Reactivity Class B Penicillin-Binding Proteins Are Required for Cephalosporin Resistance in Enterococci. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	16

CHRISTOPHER J KRISTICH

#	Article	IF	CITATIONS
19	Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes, 2016, 7, 512-517.	9.8	15
20	Structure and Dimerization of IreB, a Negative Regulator of Cephalosporin Resistance in Enterococcus faecalis. Journal of Molecular Biology, 2017, 429, 2324-2336.	4.2	15
21	Sortase-Dependent Proteins Promote Gastrointestinal Colonization by Enterococci. Infection and Immunity, 2019, 87, .	2.2	13
22	IreK-Mediated, Cell Wall-Protective Phosphorylation in <i>Enterococcus faecalis</i> . Journal of Proteome Research, 2021, 20, 5131-5144.	3.7	9
23	Thymidylate Limitation Potentiates Cephalosporin Activity toward Enterococci <i>via</i> an Exopolysaccharide-Based Mechanism. ACS Chemical Biology, 2016, 11, 1561-1568.	3.4	8
24	Reciprocal Regulation of PASTA Kinase Signaling by Differential Modification. Journal of Bacteriology, 2019, 201, .	2.2	8
25	Extracellular SalB Contributes to Intrinsic Cephalosporin Resistance and Cell Envelope Integrity in Enterococcus faecalis. Journal of Bacteriology, 2017, 199, .	2.2	7
26	Exploring bioactive peptides from bacterial secretomes using Pep <scp>SAVI</scp> â€ <scp>MS</scp> : identification and characterization of Bacâ€21 from <i>Enterococcus faecalis </i> <scp>pPD</scp> 1. Microbial Biotechnology, 2018, 11, 943-951.	4.2	7
27	The enterococcal PASTA kinase: A sentinel for cell envelope stress. Molecular Oral Microbiology, 2021, 36, 132-144.	2.7	6
28	Use of an Interspecies Chimeric Receptor for Inducible Gene Expression Reveals that Metabolic Flux through the Peptidoglycan Biosynthesis Pathway is an Important Driver of Cephalosporin Resistance in Enterococcus faecalis. Journal of Bacteriology, 2022, 204, e0060221.	2.2	4