
Erwin Alles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189334/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Learning for Instrumented Ultrasonic Tracking: From Synthetic Training Data to <i>In Vivo</i> Application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 543-552.	3.0	7
2	Neural Network Kalman Filtering for 3-D Object Tracking From Linear Array Ultrasound Data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1691-1702.	3.0	9
3	Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve therapeutic effects?. Journal of the Acoustical Society of America, 2021, 149, 2732-2742.	1.1	2
4	Freehand and video-rate all-optical ultrasound imaging. Ultrasonics, 2021, 116, 106514.	3.9	10
5	Flexible and directional fibre optic ultrasound transmitters using photostable dyes. OSA Continuum, 2021, 4, 2488.	1.8	6
6	Robot-Assisted Optical Ultrasound Scanning. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 948-958.	3.2	2
7	Direct Model-Based Inversion for Improved Freehand Optical Ultrasound Imaging. , 2021, , .		0
8	Single Sensor Interventional All-Optical Ultrasound Imaging: Beam Characteristics and Bandwidth Performance. , 2021, , .		2
9	Source Density Apodization: Image Artifact Suppression Through Source Pitch Nonuniformity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 497-504.	3.0	9
10	Real-time and Freehand Multimodal Imaging: Combining White Light Endoscopy with All-Optical Ultrasound. , 2020, , .		1
11	Robotic Control of a Multi-Modal Rigid Endoscope Combining Optical Imaging with All-Optical Ultrasound. , 2019, , .		6
12	A directional fibre optic ultrasound transmitter based on a reduced graphene oxide and polydimethylsiloxane composite. Applied Physics Letters, 2019, 114, 113505.	3.3	30
13	All-Optical Rotational Ultrasound Imaging. Scientific Reports, 2019, 9, 5576.	3.3	47
14	Large area all-optical ultrasound imaging using robotic control. , 2019, , .		4
15	Versatile and scalable fabrication method for laser-generated focused ultrasound transducers. Optics Letters, 2019, 44, 6005.	3.3	11
16	Dynamic physiological temperature and pressure sensing with phase-resolved low-coherence interferometry. Optics Express, 2019, 27, 5641.	3.4	11
17	Real-time 2D all-optical ultrasound imaging with a dynamically reconfigurable imaging aperture (Conference Presentation). , 2019, , .		0
18	Polydimethylsiloxane Composites for Optical Ultrasound Generation and Multimodality Imaging. Advanced Functional Materials, 2018, 28, 1704919.	14.9	81

ERWIN ALLES

#	Article	IF	CITATIONS
19	Real-Time, Video-Rate and Depth-Resolved Imaging of Radio-Frequency Ablation Using All-Optical Ultrasound. , 2018, , .		4
20	Adaptive All-Optical Ultrasound Imaging Through Temporal Modulation of Excitation Light. , 2018, , .		3
21	Reconfigurable 1.5D Source Arrays for Improved Elevational Focussing in All-Optical Ultrasound Imaging. , 2018, , .		0
22	Microwave Oscillator Ultrasound Receivers. , 2018, , .		0
23	Video-rate all-optical ultrasound imaging. Biomedical Optics Express, 2018, 9, 3481.	2.9	25
24	A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging. Scientific Reports, 2017, 7, 1208.	3.3	23
25	Notice of Removal: Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation. , 2017, , .		Ο
26	Acoustical characterisation of carbon nanotube-loaded polydimethylsiloxane used for optical ultrasound generation. , 2017, , .		5
27	Source density apodisation in 2D all-optical ultrasound imaging. , 2017, , .		Ο
28	Pencil beam all-optical ultrasound imaging. Biomedical Optics Express, 2016, 7, 3696.	2.9	54
29	Carbonâ€Nanotube–PDMS Composite Coatings on Optical Fibers for Allâ€Optical Ultrasound Imaging. Advanced Functional Materials, 2016, 26, 8390-8396.	14.9	120
30	Adaptive Light Modulation for Improved Resolution and Efficiency in All-Optical Pulse-Echo Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 83-90.	3.0	21
31	Fabrication and characterisation of miniature parabolic acoustic lenses. , 2015, , .		1
32	Non-invasive molecular profiling of cancer using photoacoustic imaging of functionalized gold nanorods. , 2014, , .		1
33	Photoacoustic clutter reduction using short-lag spatial coherence weighted imaging. , 2014, , .		17
34	In vivo photoacoustic oxygen saturation imaging without the need for fluence estimation. , 2014, , .		0
35	Performance characterisation of a new clinical spectroscopic epiphotoacoustic scanner. , 2013, , .		3
36	Iterative reconstruction of the transducer surface velocity. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 954-962.	3.0	3

ERWIN ALLES

#	Article	IF	CITATIONS
37	Simulating ultrasonic pulse echo registration including multiple scattering, attenuation and nonlinearity. , 2013, , .		Ο
38	A casting-based fabrication process for a high-frequency piezo-electric linear array. , 2012, , .		2
39	An axial array for three-dimensional intravascular ultrasound. , 2012, , .		1
40	Reconstructing transducer surface motion by inverse extrapolation of measured pressure wavefields. , 2010, , .		3
41	Source Camera Identification for Heavily JPEG Compressed Low Resolution Still Images*. Journal of Forensic Sciences, 2009, 54, 628-638.	1.6	96
42	Source Camera Identification for Low Resolution Heavily Compressed Images. , 2008, , .		17