
Philippe Frachet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189303/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the ligand binding specificity of SRECâ€II (scavenger receptor expressed by endothelial) Tj ETQq1	1 0.784314 2.3	l rgBT /Over
2	Molecular and Cellular Interactions of Scavenger Receptor SR-F1 With Complement C1q Provide Insights Into Its Role in the Clearance of Apoptotic Cells. Frontiers in Immunology, 2020, 11, 544.	4.8	17
3	Cytosolic PCNA interacts with p47phox and controls NADPH oxidase NOX2 activation in neutrophils. Journal of Experimental Medicine, 2019, 216, 2669-2687.	8.5	27
4	Proteomic analysis of neutrophils in ANCA-associated vasculitis reveals a dysregulation in proteinase 3-associated proteins such as annexin-A1 involved in apoptotic cell clearance. Kidney International, 2019, 96, 397-408.	5.2	32
5	Recognition protein C1q of innate immunity agglutinates nanodiamonds without activating complement. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 292-302.	3.3	4
6	Scavenger receptors expressed by endothelial cells SREC-I/SR-F1 and SREC-II both interact with C1q and calreticulin. Molecular Immunology, 2018, 102, 220.	2.2	1
7	Proteinase 3 Interferes With C1q-Mediated Clearance of Apoptotic Cells. Frontiers in Immunology, 2018, 9, 818.	4.8	34
8	Calreticulin Release at an Early Stage of Death Modulates the Clearance by Macrophages of Apoptotic Cells. Frontiers in Immunology, 2017, 8, 1034.	4.8	51
9	Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia. Scientific Reports, 2016, 6, 35561.	3.3	47
10	Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles. Journal of Biological Chemistry, 2016, 291, 10476-10489.	3.4	46
11	Role of C1q in Efferocytosis and Self-Tolerance $\hat{a} \in \ref{alpha}$ Links With Autoimmunity. , 2015, , .		4
12	The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif. FEBS Open Bio, 2015, 5, 99-106.	2.3	2
13	Relative Contribution of C1q and Apoptotic Cell-Surface Calreticulin to Macrophage Phagocytosis. Journal of Innate Immunity, 2014, 6, 426-434.	3.8	50
14	Proteinase 3 (PR3) is a phosphatidylserine-binding protein that can bind microparticles: Relevance in the context of granulomatosis with polyangiitis (GPA). Presse Medicale, 2013, 42, 652.	1.9	0
15	Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein. Journal of Biological Chemistry, 2012, 287, 42620-42633.	3.4	51
16	Proteinase 3, the Autoantigen in Granulomatosis with Polyangiitis, Associates with Calreticulin on Apoptotic Neutrophils, Impairs Macrophage Phagocytosis, and Promotes Inflammation. Journal of Immunology, 2012, 189, 2574-2583.	0.8	65
17	Proteins of the Innate Immune System Crystallize on Carbon Nanotubes but Are Not Activated. ACS Nano, 2011, 5, 730-737.	14.6	55
18	Investigations on the C1q–Calreticulin–Phosphatidylserine Interactions Yield New Insights into Apoptotic Cell Recognition. Journal of Molecular Biology, 2011, 408, 277-290.	4.2	80

Philippe Frachet

#	Article	IF	CITATIONS
19	Investigations on the cell surface calreticulin-C1q interactions and their involvement in the uptake of apoptotic cells. Molecular Immunology, 2011, 48, 1706.	2.2	1
20	The Human C1q Globular Domain: Structure and Recognition of Non-Immune Self Ligands. Frontiers in Immunology, 2011, 2, 92.	4.8	72
21	X-Ray Structure of the Human Calreticulin Globular Domain Reveals a Peptide-Binding Area and Suggests a Multi-Molecular Mechanism. PLoS ONE, 2011, 6, e17886.	2.5	83
22	Direct interaction between CD91 and C1q. Molecular Immunology, 2010, 47, 2223-2223.	2.2	0
23	Direct interaction between CD91 and C1q. FEBS Journal, 2010, 277, 3526-3537.	4.7	45
24	CD91 interacts with mannanâ€binding lectin (MBL) through the MBLâ€associated serine proteaseâ€binding site. FEBS Journal, 2010, 277, 4956-4964.	4.7	29
25	How Phagocytes Track Down and Respond to Apoptotic Cells. Critical Reviews in Immunology, 2009, 29, 111-130.	0.5	38
26	The lectinâ€like activity of human C1q and its implication in DNA and apoptotic cell recognition. FEBS Letters, 2008, 582, 3111-3116.	2.8	43
27	C1q Binds Phosphatidylserine and Likely Acts as a Multiligand-Bridging Molecule in Apoptotic Cell Recognition. Journal of Immunology, 2008, 180, 2329-2338.	0.8	238
28	A Recombinant Chimeric Epidermal Growth Factor-like Module with High Binding Affinity for Integrins. Journal of Biological Chemistry, 2003, 278, 19834-19843.	3.4	6
29	Control of the .alpha.5.beta.1 integrin/fibronectin interaction in vitro by the serine/threonine protein phosphatase calcineurin. Biochemistry, 1995, 34, 5104-5112.	2.5	29
30	Role of the transmembrane and cytoplasmic domains in the assembly and surface exposure of the platelet integrin GPIIb/IIIa. Biochemistry, 1992, 31, 2408-2415.	2.5	48
31	Assignment of the human CD9 gene to chromosome 12 (region P13) by use of human specific DNA probes. Human Genetics, 1991, 86, 268-272.	3.8	15
32	GPIIb and GPIIIa amino acid sequences deduced from human megakaryocyte cDNAs. Molecular Biology Reports, 1990, 14, 27-33.	2.3	37
33	cDNA clones for human platelet GPIIb corresponding to mRNA from megakaryocytes and HEL cells. Evidence for an extensive homology to other Arg-Gly-Asp adhesion receptors. FEBS Journal, 1988, 171, 87-93.	0.2	31
34	Assignment of human platelet GP2B (GPIIb) gene to chromosome 17, region q21.1-q21.3. Human Genetics, 1988, 80, 389-392.	3.8	5
35	Isolation of the human platelet glycoprotein IIb gene and characterization of the 5′ flanking region. Biochemical and Biophysical Research Communications, 1988, 156, 595-601.	2.1	67