Michael Wegmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3189192/publications.pdf Version: 2024-02-01

MICHAEL WECMANN

#	Article	IF	CITATIONS
1	Immunomodulatory Effects of Viral TLR Ligands on Experimental Asthma Depend on the Additive Effects of IL-12 and IL-10. Journal of Immunology, 2007, 178, 7805-7813.	0.8	110
2	More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Frontiers in Immunology, 2020, 11, 761.	4.8	110
3	Effective prevention and therapy of experimental allergic asthma using a GATA-3–specific DNAzyme. Journal of Allergy and Clinical Immunology, 2008, 121, 910-916.e5.	2.9	100
4	Induction of long-lived allergen-specific plasma cells by mucosal allergen challenge. Journal of Allergy and Clinical Immunology, 2009, 124, 819-826.e4.	2.9	98
5	Effects of a Low-Molecular-Weight CCR-3 Antagonist on Chronic Experimental Asthma. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 61-67.	2.9	87
6	Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Review of Molecular Diagnostics, 2009, 9, 85-100.	3.1	70
7	Targeting Eosinophil Biology in Asthma Therapy. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 667-674.	2.9	57
8	IL-1R3 blockade broadly attenuates the functions of six members of the IL-1 family, revealing their contribution to models of disease. Nature Immunology, 2019, 20, 1138-1149.	14.5	55
9	Nerve Growth Factor and Neurotrophin-3 Mediate Survival of Pulmonary Plasma Cells during the Allergic Airway Inflammation. Journal of Immunology, 2009, 182, 4705-4712.	0.8	45
10	Poly(inosinic-cytidylic) Acid–Triggered Exacerbation of Experimental Asthma Depends on IL-17A Produced by NK Cells. Journal of Immunology, 2015, 194, 5615-5625.	0.8	44
11	Allergy for a Lifetime?. Allergology International, 2010, 59, 1-8.	3.3	35
12	The Other T Helper Cells in Asthma Pathogenesis. Journal of Allergy, 2010, 2010, 1-14.	0.7	31
13	IL-17 Cytokines and Chronic Lung Diseases. Cells, 2022, 11, 2132.	4.1	27
14	ILâ€37 regulates allergic inflammation by counterbalancing proâ€inflammatory ILâ€1 and ILâ€33. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 856-869.	5.7	25
15	Constitutive immune activity promotes JNK- and FoxO-dependent remodeling of Drosophila airways. Cell Reports, 2021, 35, 108956.	6.4	22
16	Allergic airway inflammation: unravelling the relationship between IL-37, IL-18Rα and Tir8/SIGIRR. Expert Review of Respiratory Medicine, 2015, 9, 739-750.	2.5	21
17	Tumstatin fragment selectively inhibits neutrophil infiltration in experimental asthma exacerbation. Clinical and Experimental Allergy, 2018, 48, 1483-1493.	2.9	18
18	Long-Term Bortezomib Treatment Reduces Allergen-Specific IgE but Fails to Ameliorate Chronic Asthma in Mice. International Archives of Allergy and Immunology, 2012, 158, 43-53.	2.1	17

MICHAEL WEGMANN

#	Article	IF	CITATIONS
19	The NLRP3 inflammasome inhibitor, OLT1177 [®] , ameliorates experimental allergic asthma in mice. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1035-1038.	5.7	17
20	A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. Journal of Allergy and Clinical Immunology, 2020, 145, 1641-1654.	2.9	15
21	Nuclear Localization of Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung. Frontiers in Immunology, 2016, 7, 514.	4.8	12
22	The alphaâ€melanocyteâ€stimulating hormone acts as a local immune homeostasis factor in experimental allergic asthma. Clinical and Experimental Allergy, 2019, 49, 1026-1039.	2.9	10
23	Experimental Approaches Towards Allergic Asthma Therapy-Murine Asthma Models. Recent Patents on Inflammation and Allergy Drug Discovery, 2010, 4, 37-53.	3.6	9
24	The IL-17 receptor IL-17RE mediates polyIC-induced exacerbation of experimental allergic asthma. Respiratory Research, 2020, 21, 176.	3.6	5
25	LAMP3 deficiency affects surfactant homeostasis in mice. PLoS Genetics, 2021, 17, e1009619.	3.5	5
26	A serological biomarker of type I collagen degradation is related to a more severe, high neutrophilic, obese asthma subtype. Asthma Research and Practice, 2022, 8, 2.	2.4	5
27	Targeting cytokines in asthma therapy: could IL-37 be a solution?. Expert Review of Respiratory Medicine, 2017, 11, 675-677.	2.5	4
28	NK cells in asthma exacerbation. Oncotarget, 2015, 6, 19932-19933.	1.8	4
29	Obesity and Asthma. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery, 2009, 3, 162-172.	0.6	1