shuiliang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3188717/publications.pdf Version: 2024-02-01

SHUULANC CHEN

#	Article	IF	CITATIONS
1	Impact of anodophilic biofilm bioelectroactivity on the denitrification behavior of airâ€cathode microbial fuel cells. Biotechnology and Bioengineering, 2022, 119, 268-276.	3.3	7
2	Bioinspired self-cleaning surface with microflower-like structures constructed by electrochemically corrosion mediated self-assembly. CrystEngComm, 2022, 24, 1085-1093.	2.6	2
3	Enhancing microbial electrocatalysis of metal-based bioanode by thermal oxidation of carbon black filler. Electrochimica Acta, 2022, 412, 140149.	5.2	3
4	Construction and Teaching Practice of Chemistry General Education Course "Chemical Mysteries in Movie and Animation―under the Concept of "Student-Centered― Journal of Chemical Education, 2022, 99, 2597-2603.	2.3	2
5	Covalent Organic Frameworks for Efficient Energy Electrocatalysis: Rational Design and Progress. Advanced Energy and Sustainability Research, 2021, 2, 2000090.	5.8	29
6	Reactive coating modification of metal material with strong bonding strength and enhanced corrosion resistance for high-performance bioelectrode of microbial electrochemical technologies. Journal of Power Sources, 2021, 491, 229595.	7.8	7
7	The use of reactive binder for carbon-based oxygen reduction reaction catalyst in neutral medium. Electrochimica Acta, 2021, 380, 138155.	5.2	2
8	A mechanical rechargeable small-size microbial fuel cell with long-term and stable power output. Applied Energy, 2020, 260, 114336.	10.1	11
9	Carbonization: A feasible route for reutilization of plastic wastes. Science of the Total Environment, 2020, 710, 136250.	8.0	110
10	Threeâ€dimensional carbonâ€based anodes promoted the accumulation of exoelectrogens in bioelectrochemical systems. Water Environment Research, 2020, 92, 997-1005.	2.7	2
11	High-capacitance bioanode circumvents bioelectrochemical reaction transition in the voltage-reversed serially-stacked air-cathode microbial fuel cell. Journal of Power Sources, 2020, 468, 228402.	7.8	5
12	High-Performance Anode Materials with Superior Structure of Fe ₃ O ₄ /FeS/rGO Composite for Lithium Ion Batteries. Nano, 2020, 15, 2050128.	1.0	12
13	Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview. Catalysts, 2020, 10, 1472.	3.5	24
14	Improving rate capacity and cycling stability of Si-anode lithium ion battery by using copper nanowire as conductive additive. Journal of Alloys and Compounds, 2020, 822, 153664.	5.5	26
15	Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7. Science of the Total Environment, 2020, 725, 138508.	8.0	14
16	Aerobic microbial electrochemical technology based on the coexistence and interactions of aerobes and exoelectrogens for synergistic pollutant removal from wastewater. Environmental Science: Water Research and Technology, 2019, 5, 60-69.	2.4	8
17	Interfacial Synthesis of Cellulose-Derived Solvent-Responsive Nanoparticles via Schiff Base Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16595-16603.	6.7	24
18	Investigating the draw ratio and velocity of an electrically charged liquid jet during electrospinning. RSC Advances, 2019, 9, 13608-13613.	3.6	24

#	Article	IF	CITATIONS
19	Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 2019, 233-234, 15-28.	10.1	122
20	Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials. Journal of Materials Science, 2018, 53, 9721-9730.	3.7	64
21	Nanofibers with diameter below one nanometer from electrospinning. RSC Advances, 2018, 8, 4794-4802.	3.6	117
22	A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells. Applied Energy, 2018, 211, 1089-1094.	10.1	62
23	Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells. RSC Advances, 2018, 8, 848-855.	3.6	29
24	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. Electrochimica Acta, 2018, 292, 942-950.	5.2	46
25	Substrate Crossover Effect and Performance Regeneration of the Biofouled Rotating Air-Cathode in Microbial Fuel Cell. Frontiers in Energy Research, 2018, 6, .	2.3	7
26	Auto-feeding microbial fuel cell inspired by transpiration of plants. Applied Energy, 2018, 225, 934-939.	10.1	9
27	Flexible and conductive titanium carbide–carbon nanofibers for high-performance glucose biosensing. Electrochimica Acta, 2018, 281, 517-524.	5.2	25
28	Flexible and conductive titanium carbide–carbon nanofibers for the simultaneous determination of ascorbic acid, dopamine and uric acid. Journal of Materials Chemistry B, 2018, 6, 4610-4617.	5.8	41
29	Critical parameters selection in polarization behavior analysis of microbial fuel cells. Bioresource Technology Reports, 2018, 3, 185-190.	2.7	10
30	Preparation of Ni(OH) ₂ nanoplatelet/electrospun carbon nanofiber hybrids for highly sensitive nonenzymatic glucose sensors. RSC Advances, 2017, 7, 19345-19352.	3.6	31
31	Three-dimensional N-doped carbon nanotube@carbon foam hybrid: an effective carrier of enzymes for glucose biosensors. RSC Advances, 2017, 7, 26574-26582.	3.6	15
32	Binder Free Hierarchical Mesoporous Carbon Foam for High Performance Lithium Ion Battery. Scientific Reports, 2017, 7, 1440.	3.3	56
33	Nitrogen-doped carbon paper with 3D porous structure as a flexible free-standing anode for lithium-ion batteries. Scientific Reports, 2017, 7, 7769.	3.3	35
34	Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 239, 890-897.	7.8	67
35	Stainless Steel Mesh Supported Carbon Nanofibers for Electrode in Bioelectrochemical System. Journal of Nanomaterials, 2016, 2016, 1-5.	2.7	1
36	Immobilization of Anodophilic Biofilms for Use in Aerotolerant Bioanodes of Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 34985-34990.	8.0	12

#	Article	IF	CITATIONS
37	Hollow carbon nanosphere embedded with ultrafine Fe 3 O 4 nanoparticles as high performance Li-ion battery anode. Electrochimica Acta, 2016, 219, 356-362.	5.2	27
38	Enhanced capacity and stability of K 2 FeO 4 cathode with poly(3-hexylthiophene) coating for alkaline super-iron battery. Electrochimica Acta, 2016, 213, 132-139.	5.2	6
39	Development of high dielectric polyimides containing bipyridine units for polymer film capacitor. Reactive and Functional Polymers, 2016, 106, 93-98.	4.1	47
40	Polyimide complexes with high dielectric performance: toward polymer film capacitor applications. Journal of Materials Chemistry C, 2016, 4, 6452-6456.	5.5	43
41	Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose. Analytical Chemistry, 2016, 88, 1371-1377.	6.5	80
42	Three-Dimensional Macroporous Carbon/Fe ₃ O ₄ -Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustainable Chemistry and Engineering, 2016, 4, 1531-1537.	6.7	118
43	Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochimica Acta, 2016, 194, 246-252.	5.2	42
44	Supramolecular green phosphorescent polymer iridium complexes for solution-processed nondoped organic light-emitting diodes. Journal of Organometallic Chemistry, 2016, 804, 1-5.	1.8	4
45	Macroporous Carbon/Nitrogen-doped Carbon Nanotubes/Polyaniline Nanocomposites and Their Application in Supercapacitors. Electrochimica Acta, 2016, 189, 158-165.	5.2	73
46	Natural source derived carbon paper supported conducting polymer nanowire arrays for high performance supercapacitors. RSC Advances, 2015, 5, 14441-14447.	3.6	32
47	A novel cyclometalated Iridium(<scp>iii</scp>) complex containing dibenzo-24-crown-8: synthesis, luminescence and application in highly efficient green phosphorescent OLEDs. RSC Advances, 2015, 5, 49466-49470.	3.6	10
48	Carbonized textile with free-standing threads as an efficient anode material for bioelectrochemical systems. Journal of Power Sources, 2015, 287, 269-275.	7.8	22
49	Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 2015, 284, 252-257.	7.8	102
50	Encapsulation of a living bioelectrode by a hydrogel for bioelectrochemical systems in alkaline media. Journal of Materials Chemistry B, 2015, 3, 4641-4646.	5.8	10
51	Conversion of straw to nitrogen doped carbon for efficient oxygen reduction catalysts in microbial fuel cells. RSC Advances, 2015, 5, 89771-89776.	3.6	29
52	Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon, 2015, 95, 388-395.	10.3	77
53	Solution-processable supramolecular phosphorescent polymer iridium complexes for red organic light-emitting diodes. Materials Letters, 2015, 161, 572-575.	2.6	4
54	Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. Journal of Power Sources, 2015, 273, 1189-1193.	7.8	106

#	Article	IF	CITATIONS
55	Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	11
56	Binder-free activated carbon papers for high-performance electric double-layer capacitors. Journal of Solid State Electrochemistry, 2014, 18, 2797-2802.	2.5	7
57	Highly strong and highly tough electrospun polyimide/polyimide composite nanofibers from binary blend of polyamic acids. RSC Advances, 2014, 4, 59936-59942.	3.6	41
58	Electrospun Fibrous Membranes as Separators of Lithium-Ion Batteries. Nanostructure Science and Technology, 2014, , 91-110.	0.1	3
59	High performance polyimide-Yb complex with high dielectric constant and low dielectric loss. Materials Letters, 2014, 133, 240-242.	2.6	36
60	Template-free synthesis of hierarchical porous carbon derived from low-cost biomass for high-performance supercapacitors. RSC Advances, 2014, 4, 51072-51079.	3.6	54
61	Modification of precursor polymer using co-polymerization: A good way to high performance electrospun carbon nanofiber bundles. Materials Letters, 2014, 122, 178-181.	2.6	35
62	Free-standing nitrogen-doped carbon nanotubes at electrospun carbon nanofibers composite as an efficient electrocatalyst for oxygen reduction. Electrochimica Acta, 2014, 138, 318-324.	5.2	61
63	Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells. Journal of Power Sources, 2014, 261, 245-248.	7.8	52
64	High dielectric constant polyimide derived from 5,5′â€bis[(4â€amino) phenoxy]â€2,2′â€bipyrimidine. Jourr Applied Polymer Science, 2014, 131, .	al of 2.6	33
65	Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells. ChemElectroChem, 2014, 1, 1813-1821.	3.4	108
66	Electrocatalytic activity of carbon nanoparticles from diffusion flame towards oxygen reduction. Electrochimica Acta, 2014, 136, 176-181.	5.2	9
67	Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors. Journal of Power Sources, 2014, 268, 451-458.	7.8	56
68	Electrochemical Sensing and Biosensing Platform Based on Biomass-Derived Macroporous Carbon Materials. Analytical Chemistry, 2014, 86, 1414-1421.	6.5	202
69	Three-Dimensional Kenaf Stem-Derived Porous Carbon/MnO2 for High-Performance Supercapacitors. Electrochimica Acta, 2014, 135, 380-387.	5.2	71
70	Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy and Environmental Science, 2013, 6, 2435.	30.8	275
71	Supercapacitors based on 3D network of activated carbon nanowhiskers wrapped-on graphitized electrospun nanofibers. Journal of Power Sources, 2013, 243, 880-886.	7.8	50
72	Electrospinning Technology for Applications in Supercapacitors. Current Organic Chemistry, 2013, 17, 1402-1410.	1.6	18

#	Article	IF	CITATIONS
73	Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells. Journal of Materials Chemistry, 2012, 22, 18609.	6.7	108
74	Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis. Energy and Environmental Science, 2012, 5, 9769.	30.8	187
75	Needle-like polyaniline nanowires on graphite nanofibers: hierarchical micro/nano-architecture for high performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 5114.	6.7	178
76	A Threeâ€Ðimensionally Ordered Macroporous Carbon Derived From a Natural Resource as Anode for Microbial Bioelectrochemical Systems. ChemSusChem, 2012, 5, 1059-1063.	6.8	133
77	Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework. Composites Part B: Engineering, 2012, 43, 2382-2388.	12.0	44
78	Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosensors and Bioelectronics, 2012, 34, 282-285.	10.1	53
79	Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells. Electrochemistry Communications, 2011, 13, 1026-1029.	4.7	81
80	Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells. Bioresource Technology, 2011, 102, 10763-10766.	9.6	64
81	Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells. Energy and Environmental Science, 2011, 4, 1417.	30.8	289
82	High strength electrospun fibers. Polymers for Advanced Technologies, 2011, 22, 295-303.	3.2	26
83	Heat and Solvent Resistant Electrospun Polybenzoxazole Nanofibers from Methoxy-Containing Polyaramide. Journal of Nanomaterials, 2010, 2010, 1-5.	2.7	17
84	Polymeric Nanosprings by Bicomponent Electrospinning. Macromolecular Materials and Engineering, 2009, 294, 265-271.	3.6	65
85	Effect of Different Bicomponent Electrospinning Techniques on the Formation of Polymeric Nanosprings. Macromolecular Materials and Engineering, 2009, 294, 781-786.	3.6	47
86	Supercapacitors based on hybrid carbon nanofibers containing multiwalled carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 2810.	6.7	182
87	Electrospun nanofiber belts made from high performance copolyimide. Nanotechnology, 2008, 19, 015604.	2.6	50
88	Mechanical characterization of single high-strength electrospun polyimide nanofibres. Journal Physics D: Applied Physics, 2008, 41, 025308.	2.8	58
89	High strength electrospun polymer nanofibers made from BPDA–PDA polyimide. European Polymer Journal, 2006, 42, 1099-1104	5.4	56
90	Electrospun polymer nanofibres with small diameters. Nanotechnology, 2006, 17, 1558-1563.	2.6	249

#	Article	IF	CITATIONS
91	High-Strength Mats from Electrospun Poly(p-Phenylene Biphenyltetracarboximide) Nanofibers. Advanced Materials, 2006, 18, 668-671.	21.0	152