Souad Ammar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3188130/publications.pdf

Version: 2024-02-01

101543 106344 5,372 176 36 h-index citations papers

65 g-index 185 185 185 7250 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews, 2018, 47, 5187-5233.	38.1	390
2	Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. Journal of Materials Chemistry, 2001, 11, 186-192.	6.7	315
3	Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. Journal of Magnetism and Magnetic Materials, 2008, 320, 3242-3250.	2.3	174
4	Layered nickel hydroxide salts: synthesis, characterization and magnetic behaviour in relation to the basal spacing. Journal of Materials Chemistry, 2002, 12, 3238-3244.	6.7	168
5	Acetate- and Thiol-Capped Monodisperse Ruthenium Nanoparticles:Â XPS, XAS, and HRTEM Studies. Langmuir, 2005, 21, 6788-6796.	3.5	164
6	Catechol derivatives-coated Fe3O4 and \hat{I}^3 -Fe2O3 nanoparticles as potential MRI contrast agents. Journal of Colloid and Interface Science, 2010, 341, 248-254.	9.4	156
7	Evaluation of iron oxide nanoparticle biocompatibility. International Journal of Nanomedicine, $2011, 6, 787$.	6.7	143
8	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 261-265.	2.4	141
9	Unravelling Kinetic and Thermodynamic Effects on the Growth of Gold Nanoplates by Liquid Transmission Electron Microscopy. Nano Letters, 2015, 15, 2574-2581.	9.1	133
10	Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations. Journal of Catalysis, 2004, 226, 16-24.	6.2	122
11	Magnetic properties of Zn-substituted MnFe ₂ O ₄ nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chemistry of Materials, 2010, 22, 5420-5429.	6.7	104
12	Synthesis, characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide: Coii(C2H4O2). New Journal of Chemistry, 2005, 29, 355-361.	2.8	98
13	Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. Journal of Physics Condensed Matter, 2004, 16, 4357-4372.	1.8	93
14	Metastable solid solutions in the system ZnOî—,CoO: synthesis by hydrolysis in polyol medium and study of the morphological characteristics. Solid State Sciences, 2001, 3, 31-42.	3.2	89
15	Characterization and magnetic properties of Sm- and Gd-substituted CoFe2O4 nanoparticles prepared by forced hydrolysis in polyol. Materials Research Bulletin, 2007, 42, 1888-1896.	5.2	7 5
16	Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review. Nanomaterials, 2018, 8, 149.	4.1	74
17	Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. Journal of Physics Condensed Matter, 2006, 18, 9055-9069.	1.8	73
18	Magnetic nanocrystals coated by molecularly imprinted polymers for the recognition of bisphenol A. Journal of Materials Chemistry, 2012, 22, 1807-1811.	6.7	70

#	Article	IF	Citations
19	Preparation of Water-Soluble Magnetic Nanocrystals Using Aryl Diazonium Salt Chemistry. Journal of the American Chemical Society, 2011, 133, 1646-1649.	13.7	69
20	Size-dependent magnetic properties of CoFe ₂ O ₄ nanoparticles prepared in polyol. Journal of Physics Condensed Matter, 2011, 23, 506001.	1.8	60
21	Annealing Effect on the Magnetic Properties of Polyol-made Niâ^Zn Ferrite Nanoparticles. Chemistry of Materials, 2010, 22, 1350-1366.	6.7	59
22	Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. Journal of Magnetism and Magnetic Materials, 2016, 416, 315-320.	2.3	59
23	Magnetic Fe2O3â^Polystyrene/PPy Core/Shell Particles:  Bioreactivity and Self-Assembly. Langmuir, 2007, 23, 10940-10949.	3.5	57
24	Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. Journal of Non-Crystalline Solids, 2004, 345-346, 658-662.	3.1	56
25	Mechanosynthesis, crystal structure and magnetic characterization of M-type SrFe12O19. Ceramics International, 2014, 40, 4033-4038.	4.8	55
26	Polyol synthesis of non-stoichiometric Mnâ€"Zn ferrite nanocrystals: structural /microstructural characterization and catalytic application. RSC Advances, 2015, 5, 65010-65022.	3.6	55
27	Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots. RSC Advances, 2013, 3, 2572.	3.6	52
28	Synthesis of nickel-zinc ferrite nanoparticles in polyol: morphological, structural and magnetic studies. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 504-512.	1.8	45
29	Annealing Effects on Zn(Co)O: From Para- to Ferromagnetic Behavior. Chemistry of Materials, 2009, 21, 843-855.	6.7	45
30	Physical study of Eu doped MoO3 thin films. Journal of Alloys and Compounds, 2016, 687, 595-603.	5.5	45
31	Synthesis and Magnetic Properties of Ferrimagnetic CoFe ₂ O ₄ Nanoparticles Embedded in an Antiferromagnetic NiO Matrix. Chemistry of Materials, 2008, 20, 4861-4872.	6.7	43
32	Magnetic Properties of Nanostructured Spinel Ferrites. IEEE Transactions on Magnetics, 2014, 50, 1-6.	2.1	43
33	Influence of Y doping on structural, vibrational, optical and magnetic properties of BiFeO 3 ceramics prepared by Mechanical Activation. Ceramics International, 2017, 43, 4139-4150.	4.8	42
34	Structure and magnetocaloric properties of La0.8Ag0.2â~xKxMnO3 perovskite manganites. Materials Chemistry and Physics, 2012, 132, 839-845.	4.0	41
35	Sonochemical assisted synthesis of SrFe12O19 nanoparticles. Ultrasonics Sonochemistry, 2016, 29, 470-475.	8.2	41
36	Co1â^'xZnxFe2O4 (Oâ‰魔命‰車) nanocrystalline solid solution prepared by the polyol method: Characterization and magnetic properties. Materials Research Bulletin, 2012, 47, 2590-2598.	5.2	38

#	Article	IF	Citations
37	TRAIL–NP hybrids for cancer therapy: a review. Nanoscale, 2017, 9, 5755-5768.	5.6	37
38	Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-Î ² -cyclodextrin-APTES@maghemite nanoparticles. Environmental Science: Nano, 2018, 5, 158-168.	4.3	37
39	Cobalt speciation in cobalt oxide-apatite materials: structure–properties relationship in catalytic oxidative dehydrogenation of ethane and butan-2-ol conversion. Journal of Materials Chemistry, 2006, 16, 2453-2463.	6.7	35
40	Polyol synthesis and magnetic study of Mn3O4 nanocrystals of tunable size. Journal of Magnetism and Magnetic Materials, 2010, 322, 2634-2640.	2.3	35
41	Polyol Synthesis: A Versatile Wet-Chemistry Route for the Design and Production of Functional Inorganic Nanoparticles. Nanomaterials, 2020, 10, 1217.	4.1	35
42	Magnetic and magnetocaloric properties of lanthanum manganites with monovalent elements doping at A-site. Journal of Magnetism and Magnetic Materials, 2011, 323, 252-257.	2.3	33
43	Structural, magnetic and magnetocaloric study of La0.7â^xEuxSr0.3MnO3 (x=0.1, 0.2 and 0.3) manganites. Ceramics International, 2015, 41, 7337-7344.	4.8	33
44	Polyol-synthesized Zn0.9Mn0.1S nanoparticles as potential luminescent and magnetic bimodal imaging probes: synthesis, characterization, and toxicity study. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	32
45	Structure and magnetic properties of GdxY1â^'xFeO3 obtained by mechanosynthesis. Journal of Alloys and Compounds, 2014, 586, S90-S94.	5.5	32
46	On the microstructural and magnetic properties of fine-grained CoFe2O4 ceramics produced by combining polyol process and spark plasma sintering. Journal of Magnetism and Magnetic Materials, 2014, 370, 87-95.	2.3	32
47	Synthesis, Mössbauer Characterization, and Ab Initio Modeling of Iron Oxide Nanoparticles of Medical Interest Functionalized by Dopamine. Journal of Physical Chemistry C, 2013, 117, 14295-14302.	3.1	31
48	Synthesis of Y3Fe5O12 (YIG) assisted by high-energy ball milling. Ceramics International, 2012, 38, 5257-5263.	4.8	30
49	Layered nickel–cobalt hydroxyacetates and hydroxycarbonates: Chimie douce synthesis and structural features. Journal of Physics and Chemistry of Solids, 2006, 67, 932-937.	4.0	29
50	Crystallinity of nano C-LiFePO4 prepared by the polyol process. Journal of Power Sources, 2012, 217, 220-228.	7.8	29
51	Effect of synthesis method on structural, magnetic and magnetocaloric properties of La0.7Sr0.2Ag0.1MnO3 manganite. Materials Chemistry and Physics, 2014, 145, 56-59.	4.0	27
52	Structural and optical properties of ZnS/ZnO core/shell nanowires grown on ITO glass. Materials Letters, 2014, 129, 142-145.	2.6	26
53	Photoelectrochemical properties of nanocrystalline ZnS discrete versus continuous coating of ZnO nanorods prepared by electrodeposition. RSC Advances, 2016, 6, 30919-30927.	3.6	25
54	Ferromagnetic resonance behavior of spark plasma sintered Niâ€"Zn ferrite nanoparticles produced by a chemical route. Journal of Applied Physics, 2011, 109, 07A329.	2.5	24

#	Article	IF	CITATIONS
55	Transferrin receptor-1 iron-acquisition pathway — Synthesis, kinetics, thermodynamics and rapid cellular internalization of a holotransferrin–maghemite nanoparticle construct. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 4254-4264.	2.4	24
56	In situ monitored stretching induced \hat{l}_{\pm} to \hat{l}_{\pm}^2 allotropic transformation of flexible poly(vinylidene) Tj ETQq0 0 0 rgl 84, 602-611.	BT /Overlo 5.4	ck 10 Tf 50 1
57	The structural and the photoelectrochemical properties of ZnO–ZnS/ITO 1D hetero-junctions prepared by tandem electrodeposition and surface sulfidation: on the material processing limits. RSC Advances, 2018, 8, 11785-11798.	3.6	24
58	Influence of nanoparticle size and concentration on the electroactive phase content of PVDF in PVDF-CoFe ₂ O ₄ -based hybrid films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 252-258.	1.8	23
59	Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following \hat{I}^3 -Fe ₂ O ₃ NPs internalization and magnetic field application. RSC Advances, 2016, 6, 15415-15423.	3.6	23
60	Electrode Surface Confinement of Self-Assembled Enzyme Aggregates Using Magnetic Nanoparticles and Its Application in Bioelectrocatalysis. Analytical Chemistry, 2007, 79, 187-194.	6.5	22
61	Synergetic effect of CdS quantum dots and TiO2 nanofibers for photoelectrochemical hydrogen generation. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	22
62	Combining Soft Chemistry and Spark Plasma Sintering to Produce Highly Dense and Finely Grained Soft Ferrimagnetic <scp><scp>Y</scp></scp>	su 3:8 su b >12 <td>ub></td>	ub>
63	Preparation of nanostructured La0.7Ca0.3â^'xBaxMnO3 ceramics by a combined solâ€"gel and spark plasma sintering route and resulting magnetocaloric properties. Journal of Magnetism and Magnetic Materials, 2015, 381, 215-219.	2.3	22
64	Magnetic and magnetocaloric properties of La0.85(Na1â^'xKx)0.15MnO3 ceramics produced by reactive spark plasma sintering. Journal of Applied Physics, 2014, 115, 17A917.	2.5	21
65	Elaboration and Rheological Investigation of Magnetic Sensitive Nanocomposite Biopolymer Networks. Macromolecules, 2014, 47, 3136-3144.	4.8	21
66	Synthesis of highly soluble polymer-coated magnetic nanoparticles using a combination of diazonium salt chemistry and the iniferter method. RSC Advances, 2012, 2, 826-830.	3.6	20
67	Synthesis of core/shell ZnO/ZnSe nanowires using novel low cost two-steps electrochemical deposition technique. Journal of Alloys and Compounds, 2015, 647, 660-664.	5.5	20
68	Magnetic properties of ferrite-titanate nanostructured composites synthesized by the polyol method and consolidated by spark plasma sintering. Journal of Applied Physics, 2013, 113, 17B519.	2.5	19
69	Correlation between Titanium foil substrate purity and TiO 2 NTs; physical and electrochemical properties for enhanced photoelectrochemical applications. International Journal of Hydrogen Energy, 2016, 41, 6230-6239.	7.1	19
70	On the exact crystal structure of exchange-biased Fe ₃ O ₄ –CoO nanoaggregates produced by seed-mediated growth in polyol. CrystEngComm, 2016, 18, 3799-3807.	2.6	19
71	Effect of manganese concentration on physical properties of ZnS:Mn thin films prepared by chemical bath deposition. Journal of Materials Science: Materials in Electronics, 2017, 28, 1463-1471.	2.2	19
72	Exchangeâ€Biased Fe _{3â^'} <i></i> O ₄ oO Granular Composites of Different Morphologies Prepared by Seedâ€Mediated Growth in Polyol: From Coreâ€"Shell to Multicore Embedded Structures. Particle and Particle Systems Characterization, 2018, 35, 1800104.	2.3	19

#	Article	IF	CITATIONS
73	Powder and film of nickel and iron-layered double hydroxide: Elaboration in polyol medium and characterization. Journal of Physics and Chemistry of Solids, 2008, 69, 1052-1055.	4.0	18
74	Nanotoxicological study of polyol-made cobalt-zinc ferrite nanoparticles in rabbit. Environmental Toxicology and Pharmacology, 2016, 45, 321-327.	4.0	18
75	Mechanism and microstructural evolution of polyol mediated synthesis of nanostructured M-type SrFe12O19. Journal of Magnetism and Magnetic Materials, 2016, 407, 188-194.	2.3	18
76	Maghemite nanoparticles coated with human serum albumin: combining targeting by the iron-acquisition pathway and potential in photothermal therapies. Journal of Materials Chemistry B, 2017, 5, 3154-3162.	5.8	18
77	A comparative study of La0.65Ca0.2(Na0.5K0.5)0.15MnO3 compound synthesized by solid-state and sol-gel process. Journal of Alloys and Compounds, 2017, 695, 2597-2604.	5.5	18
78	Synthesis and characterization of zinc-tin-mixed oxides thin films. Superlattices and Microstructures, 2018, 123, 129-137.	3.1	18
79	Study of the stability under in vitro physiological conditions of surface silanized equimolar HfNbTaTiZr high-entropy alloy: A first step toward bio-implant applications. Surface and Coatings Technology, 2020, 385, 125374.	4.8	18
80	Nanocrystalline Ni0.8Zn0.2Fe2O4 films prepared by spray deposition from polyol-mediated sol: Microstructural and magnetic characterization. Thin Solid Films, 2010, 518, 2592-2598.	1.8	17
81	Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	17
82	Severe reduction of Ni–Zn ferrites during consolidation by Spark Plasma Sintering (SPS). Journal of Magnetism and Magnetic Materials, 2016, 400, 311-314.	2.3	17
83	Star-Shaped Fe3-xO4-Au Core-Shell Nanoparticles: From Synthesis to SERS Application. Nanomaterials, 2020, 10, 294.	4.1	17
84	Effect of sodium substitution on the physical properties of sol–gel made La 0.65 Ca 0.35 MnO 3 ceramics. Materials Chemistry and Physics, 2014, 148, 751-758.	4.0	16
85	Ultrafine grained high density manganese zinc ferrite produced using polyol process assisted by Spark Plasma Sintering. Journal of Magnetism and Magnetic Materials, 2015, 387, 90-95.	2.3	16
86	Transferrin-bearing maghemite nano-constructs for biomedical applications. Journal of Applied Physics, 2015, 117, 17A336.	2.5	16
87	Photoelectrochemical properties of ZnS- and CdS-TiO2 nanostructured photocatalysts: Aqueous sulfidation as a smart route to improve catalyst stability. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356, 489-501.	3.9	16
88	Highly Efficient Electron Transfer in a Carbon Dot–Polyoxometalate Nanohybrid. Journal of Physical Chemistry Letters, 2020, 11, 4379-4384.	4.6	16
89	Water Vapor Photoelectrolysis in a Solid-State Photoelectrochemical Cell with TiO ₂ Nanotubes Loaded with CdS and CdSe Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 46875-46885.	8.0	16
90	Spray deposition of nanocrystalline Ni1â^'xZnxFe2O4 (xâ $@^1/2$ 0.6) films from polyol-mediated sol: Microstructure and magnetic properties. Journal of Applied Physics, 2008, 103, 07E744.	2.5	15

#	Article	IF	CITATIONS
91	Structural and magnetic properties of mixed Co–Ln (Ln = Nd, Sm, Eu, Gd and Ho) diethyleneglycolate complexes. Dalton Transactions, 2015, 44, 16013-16023.	3.3	15
92	Influence of magnetic field on the critical behavior of La0.7Ca0.2Ba0.1MnO3. Journal of Alloys and Compounds, 2015, 627, 211-217.	5 . 5	15
93	Giant Exchangeâ€Bias in Polyolâ€Made CoFe ₂ O ₄ â€CoO Core–Shell Like Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800290.	2.3	15
94	Copper/Nickel-Decorated Olive Pit Biochar: One Pot Solid State Synthesis for Environmental Remediation. Applied Sciences (Switzerland), 2021, 11, 8513.	2.5	15
95	Ferromagnetic resonance in Ni–Zn ferrite nanoparticles in different aggregation states. Journal of Magnetism and Magnetic Materials, 2012, 324, 3398-3401.	2.3	14
96	Exchange-biased oxide-based core–shell nanoparticles produced by seed-mediated growth in polyol. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	14
97	Lamellar nickel hydroxy-halides: anionic exchange synthesis, structural characterization and magnetic behavior. Journal of Materials Chemistry C, 2014, 2, 4449-4460.	5. 5	14
98	An impedance spectroscopy study of magnetodielectric coupling in BaTiO3-CoFe2O4 nanostructured multiferroics. AIP Advances, 2017, 7, 055813.	1.3	14
99	TRAIL acts synergistically with iron oxide nanocluster-mediated magneto- and photothermia. Theranostics, 2019, 9, 5924-5936.	10.0	14
100	Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process. Beilstein Journal of Nanotechnology, 2019, 10, 1166-1176.	2.8	14
101	Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. Nanomaterials, 2021, 11, 354.	4.1	14
102	Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7–Î′ addition. Journal of Magnetism and Magnetic Materials, 2016, 414, 97-104.	2.3	13
103	Importance of the synthesis and sintering methods on the properties of manganite ceramics: The example of La 0.7 Ca 0.3 MnO 3. Journal of Alloys and Compounds, 2018, 759, 52-59.	5.5	13
104	Deposition of SnS thin films by chemical bath deposition method: Effect of surfactants. European Physical Journal Plus, 2019, 134, 1.	2.6	13
105	Low Field Microwave Absorption in Ni–Zn Ferrite Nanoparticles in Different Aggregation States. Nanoscience and Nanotechnology Letters, 2011, 3, 598-602.	0.4	12
106	Effect of copper concentration on the physical properties of ZnS:Cu alloys prepared by chemical bath deposition. Journal of Materials Science: Materials in Electronics, 2016, 27, 10684-10695.	2.2	12
107	Structural, morphological and optical properties of TiO2:Mn thin films prepared by spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 4622-4630.	2.2	12
108	Functionalization of Iron Oxide Nanoparticles With HSA Protein for Thermal Therapy. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	12

#	Article	IF	Citations
109	Citric-Acid-Assisted Preparation of Biochar Loaded with Copper/Nickel Bimetallic Nanoparticles for Dye Degradation. Colloids and Interfaces, 2022, 6, 18.	2.1	12
110	Magnetocaloric properties of La _{0.67} Ca _{0.33} MnO ₃ produced by reactive spark plasma sintering and by conventional ceramic route. Materials Research Express, 2014, 1, 046105.	1.6	11
111	Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance. Journal of Applied Physics, 2015, 117, 17A503.	2.5	11
112	Visible-light photocatalytic performances of TiO ₂ nanobelts decorated with iron oxide nanocrystals. RSC Advances, 2016, 6, 114843-114851.	3.6	11
113	Surface modification of \hat{I}^3 -Fe 2 O 3 nanoparticles by grafting from poly-(hydroxyethylmethacrylate) and poly-(methacrylic acid): Qualitative and quantitative analysis of the polymeric coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 222-231.	4.7	11
114	Rapid solid state synthesis by spark plasma sintering and magnetic properties of LaMnO3 perovskite manganite. Materials Letters, 2012, 80, 195-198.	2.6	10
115	Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 138-144.	4.7	10
116	Effect of the Support Nanostructure (Nanofibers and Nanotubes) on the Photoelectrochemical Performance of TiO ₂ -CdO@CdS Semiconducting Architectures. Journal of the Electrochemical Society, 2017, 164, H286-H292.	2.9	10
117	Hydrothermal synthesis, characterization and magnetic properties of (N4C6H21)·(Co(H2PO4)(HPO4)2). Materials Research Bulletin, 2005, 40, 1270-1278.	5.2	9
118	Size tuned polyol-made $Zn < sub > 0.9 < /sub > M < sub > 0.1 < /sub > Fe < sub > 2 < /sub > O < sub > 4 < /sub > (M = Mn, Co,) Tj Equation (M = Mn$	ETQq0 0 0 1.6	rgBT /Overloc
	control to toxicity survey. Materials Research Express, 2014, 1, 045047.		
119	Photo-anodes based on TiO2 and carbon dots for photo-electrocatalytical measurements. Materials Letters, 2019, 250, 119-122.	2.6	9
120	On the first evidence of exchange-bias feature in magnetically contrasted consolidates made from CoFe2O4-CoO core-shell nanoparticles. Scientific Reports, 2019, 9, 19468.	3.3	9
121	Experimental and theoretical evidence for oriented aggregate crystal growth of CoO in a polyol. CrystEngComm, 2021, 23, 1756-1764.	2.6	9
122	Low Field Microwave Absorption in Nanostructured Ferrite Ceramics Consolidated by Spark Plasma Sintering. Journal of Superconductivity and Novel Magnetism, 2012, 25, 2389-2393.	1.8	8
123	Rapid synthesis of La0.85Na0.15MnO3 by spark plasma sintering: Magnetic behavior and magnetocaloric properties. Materials Chemistry and Physics, 2013, 139, 629-633.	4.0	8
124	TiO ₂ nanofibers supported on Ti sheets prepared by hydrothermal corrosion: effect of the microstructure on their photochemical and photoelectrochemical properties. RSC Advances, 2015, 5, 95038-95046.	3.6	8
125	Effect of Calcium Deficiency on the Structural, Magnetic and Magnetocaloric Properties in La0.65Ca0.35MnO3 Manganites Oxides. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2409-2415.	1.8	8
126	A tandem polyol process and ATRP used to design new processable hybrid exchange-biased Co _x Fe _{3â^'x} O ₄ @CoO@PMMA nanoparticles. RSC Advances, 2016, 6, 49973-49979.	3.6	8

#	Article	IF	CITATIONS
127	An easy-to achieve approach for the fabrication of CdS QDs sensitized TiO2 nanotubes and their enhanced photoelectrochemical performance. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 337-344.	3.9	8
128	The Verwey transition in nanostructured magnetite produced by a combination of chimie douce and spark plasma sintering. Journal of Applied Physics, 2014, 115, 17E117.	2.5	7
129	Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters. AIP Advances, 2017, 7, .	1.3	7
130	Magnetocaloric nanostructured La0.7Ca0.3â^'xBaxMnO3 (xÂ<Â0.3) ceramics produced by combining polyol process and Spark Plasma Sintering. Journal of Alloys and Compounds, 2017, 691, 474-481.	5 . 5	7
131	Effect of ZnS, iZnO, dZnO and Cu(In,Ga)Se2 thickness on the performance of simulated Mo/Cu(In,Ga)Se2/ZnS/iZnO/dZnO solar cell. Optical and Quantum Electronics, 2019, 51, 1.	3.3	7
132	Coupling tumor necrosis factorâ€related apoptosisâ€inducing ligand to iron oxide nanoparticles increases its apoptotic activity on HCT116 and HepG2 malignant cells: effect of magnetic core size. Journal of Interdisciplinary Nanomedicine, 2019, 4, 34-50.	3.6	7
133	Assembly of gold nanoparticles using turnip yellow mosaic virus as an in-solution SERS sensor. RSC Advances, 2019, 9, 32296-32307.	3.6	7
134	Polyol-Made Luminescent and Superparamagnetic \hat{l}^2 -NaY0.8Eu0.2F4@ \hat{l}^3 -Fe2O3 Core-Satellites Nanoparticles for Dual Magnetic Resonance and Optical Imaging. Nanomaterials, 2020, 10, 393.	4.1	7
135	Manganese oxide nanoparticles prepared by olive leaf extract-mediated wet chemistry and their supercapacitor properties. Solid State Sciences, 2021, 113, 106551.	3.2	7
136	The compound Tl4Cu4(P2O7)3, a new three-dimensional structure with interconnected tunnels. Solid State Sciences, 2000, 2, 587-594.	3.2	6
137	Effect of Air Annealing on the Structural and Magnetic Properties of LaMnO3 Perovskite Produced by Reactive Spark Plasma Sintering Route. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1467-1471.	1.8	6
138	Nanostructured tetragonal barium titanate produced by the polyol and spark plasma sintering (SPS) route. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	6
139	Low-Temperature Short-Time SPS Processes to Produce Fine-Grained High-Coercivity Barium Hexaferrite Ceramics from Polyol Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2018, 31, 347-351.	1.8	6
140	New Iron Oxide Nanoparticles Catechol-Grafted with Bis(amidoxime)s for Uranium(VI) Depletion of Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2019, 19, 4911-4919.	0.9	6
141	The first one-pot synthesis of undoped and Eu doped \hat{l}^2 -NaYF4 nanocrystals and their evaluation as efficient dyes for nanomedicine. Materials Science and Engineering C, 2019, 94, 26-34.	7.3	6
142	Rheological investigation of magnetic sensitive biopolymer composites: effect of the ligand grafting of magnetic nanoparticles. Rheologica Acta, 2020, 59, 165-176.	2.4	6
143	Preparation of Fe3O4-Ag Nanocomposites with Silver Petals for SERS Application. Nanomaterials, 2021, 11, 1288.	4.1	6
144	Preparation of nanocomposite materials from mercaptoacetate-modified platinum nanoparticles and a layered nickel hydroxyacetate salt. Materials Research Bulletin, 2009, 44, 1692-1699.	5.2	5

#	Article	IF	Citations
145	Effect of monovalent doping on the physical properties of La0.7Sr0.3MnO3compound synthesized using sol-gel technique. IOP Conference Series: Materials Science and Engineering, 2012, 28, 012054.	0.6	5
146	The effects of spark plasma sintering consolidation on the ferromagnetic resonance spectra (FMR) of Niâ€"Zn ferrites. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1062-1066.	1.8	5
147	Granular Fe3 â^x04-CoO hetero-nanostructures produced byin situseed mediated growth in polyol: magnetic properties and chemical stability. Materials Research Express, 2014, 1, 025035.	1.6	5
148	Formation and Study of the Nanostructured CuAl0.5Ga0.5Te2 Synthesized by Mechanical Alloying Processing. Jom, 2014, 66, 985-991.	1.9	5
149	Effect of samarium doping on the physical properties of chemically sprayed titanium dioxide thin films. Journal of Renewable and Sustainable Energy, 2015, 7, .	2.0	5
150	Soft chemistry synthesis route toward Bi2Te3 hierarchical hollow spheres. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	5
151	Annealing Effect on the Structural, Magnetic and Magnetocaloric Properties of La0.65Ca0.2K0.15MnO3 Synthesized by SolGel Method. Journal of Superconductivity and Novel Magnetism, 2015, 28, 1379-1387.	1.8	5
152	Enhancement of the photoelectrochemical properties of TiO2 nanofibers supported on Ti sheets by polyol-made CdSe quantum-dots impregnation. Materials Letters, 2020, 273, 127934.	2.6	5
153	Niobiaâ€Supported Palladium–Manganese Materials: Synthesis and Structural Investigation. European Journal of Inorganic Chemistry, 2008, 2008, 1623-1631.	2.0	4
154	Giant Barkhausen Jumps in Exchange Biased Bulk Nanocomposites Sintered from Core-Shell $\theta_{3}=0$ Nanoparticles. IEEE Transactions on Magnetics, 2013, 49, 3356-3359.	2.1	4
155	Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium. AIP Advances, 2016, 6, .	1.3	4
156	Evaluation of polyolâ€made Gd ³⁺ â€substituted Co _{0.6} Zn _{0.4} Fe ₂ O ₄ nanoparticles as high magnetization MRI negative contrast agents. Journal of Interdisciplinary Nanomedicine, 2019, 4, 4-23.	3 . 6	4
157	Polyol Process Coupled to Cold Plasma as a New and Efficient Nanohydride Processing Method: Nano-Ni2H as a Case Study. Nanomaterials, 2020, 10, 136.	4.1	4
158	Comparative study of the structural and magnetic properties of two cobalt ferrite nanocrystals produced with different iron precursors. Materials Letters, 2013, 113, 198-201.	2.6	3
159	Magnetoelectric Coupling in BaTiO ₃ –CoFe ₂ O ₄ Nanocomposites Studied by Impedance Spectroscopy Under Magnetic Field. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	3
160	On the limits of Reactive-Spark-Plasma Sintering to prepare magnetically enhanced nanostructured ceramics: the case of the CoFe2O4-NiO system. Scientific Reports, 2019, 9, 14119.	3.3	3
161	Grafting TRAIL through Either Amino or Carboxylic Groups onto Maghemite Nanoparticles: Influence on Pro-Apoptotic Efficiency. Nanomaterials, $2021, 11, 502$.	4.1	3
162	Dawson-type polyoxometalates photosensitized with carbon dots for photocatalytic reduction of silver ions. Materials Research Bulletin, 2022, 149, 111721.	5.2	3

#	Article	IF	Citations
163	Growth of carbon nanotubes through selective deposition of nanoparticles. Journal of Materials Chemistry, 2010, 20, 7197.	6.7	2
164	Polyol-mediated syntheses of crystalline nanosized manganese oxides. Journal of Nanoparticle Research, 2014, $16,1.$	1.9	2
165	A combined sol–gel and spark plasma sintering route to produce highly dense and fine-grained La0.65Ca0.20Na0.15MnO3ceramics for magnetocaloric applications. Materials Research Express, 2014, 1, 015703.	1.6	2
166	Polyol-Made Spinel Ferrite Nanoparticlesâ€"Local Structure and Operating Conditions: NiFe2O4 as a Case Study. Frontiers in Materials, 2021, 8, .	2.4	2
167	Design and Functionalization of Magnetic Core-Shell Oxide Nanoparticles Exhibiting Exchange Bias Features. Materials Research Society Symposia Proceedings, 2011, 1359, 175.	0.1	1
168	Structural and Magneto-transport Properties of (La0.75Ca0.15Sr0.1MnO3)0.8(YBa2Cu3O7â^'Î^)0.2 Composite. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2583-2588.	1.8	1
169	Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films. Beilstein Journal of Nanotechnology, 2017, 8, 408-417.	2.8	1
170	<i>Ab initio</i> structure determination of [Eu ₅ (C ₂ H ₄ O ₂) ₆ (CH ₃ CO ₂) ₆ (CH ₃ CO ₂ (i>n by X-ray powder diffraction. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 592-597.	!) <s< td=""><td>ub>3]</td></s<>	ub>3]
171	Magnetic Traits in CoOâ€Core@CoFe 2 O 4 â€shell Like Nanoparticles. ChemNanoMat, 2019, 5, 514-524.	2.8	1
172	Exchange-bias features in nanoceramics prepared by spark plasma sintering of exchange-biased nanopowders. Journal of Materials Chemistry C, 2020, 8, 5941-5949.	5 . 5	1
173	Synthesis of Magnetic Wires from Polyol-Derived Fe-Glycolate Wires. Nanomaterials, 2020, 10, 318.	4.1	1
174	Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain Contribution. Journal of Physical Chemistry C, 2022, 126, 1531-1541.	3.1	1
175	Electron transfer between carbon dots and tetranuclear Dawson-derived sandwich polyanions. Physical Chemistry Chemical Physics, 2022, 24, 17654-17664.	2.8	1
176	Synthesis of cobalt ferrite in one-pot-polyol method, characterization, and application to methylparaben photodegradation in the presence of peroxydisulfate. Materials Today Chemistry, 2022, 26, 101029.	3.5	0