
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3187578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation. Circulation Research, 2022, 131, 239-257.	4.5	26
2	Building an Artificial Cardiac Microenvironment: A Focus on the Extracellular Matrix. Frontiers in Cell and Developmental Biology, 2020, 8, 559032.	3.7	19
3	The Microenvironment of Decellularized Extracellular Matrix from Heart Failure Myocardium Alters the Balance between Angiogenic and Fibrotic Signals from Stromal Primitive Cells. International Journal of Molecular Sciences, 2020, 21, 7903.	4.1	16
4	When Stiffness Matters: Mechanosensing in Heart Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 334.	3.7	50
5	Automated Segmentation of Fluorescence Microscopy Images for 3D Cell Detection in human-derived Cardiospheres. Scientific Reports, 2019, 9, 6644.	3.3	44
6	Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. Journal of Cardiovascular Translational Research, 2017, 10, 150-166.	2.4	30
7	Spheroid three-dimensional culture enhances Notch signaling in cardiac progenitor cells. MRS Communications, 2017, 7, 496-501.	1.8	6
8	A discrete in continuous mathematical model of cardiac progenitor cells formation and growth as spheroid clusters (Cardiospheres). Mathematical Medicine and Biology, 2017, 35, dqw022.	1.2	8
9	Effects of Exercise on Arrhythmia (and Viceversa): Lesson from the Greek Mythology. Advances in Experimental Medicine and Biology, 2017, 1000, 85-93.	1.6	0
10	Cardiac Mechanoperception: A Life-Long Story from Early Beats to Aging and Failure. Stem Cells and Development, 2017, 26, 77-90.	2.1	26
11	Human Lung Spheroids as In Vitro Niches of Lung Progenitor Cells with Distinctive Paracrine and Plasticity Properties. Stem Cells Translational Medicine, 2017, 6, 767-777.	3.3	23
12	EMT/MET at the Crossroad of Stemness, Regeneration and Oncogenesis: The Ying-Yang Equilibrium Recapitulated in Cell Spheroids. Cancers, 2017, 9, 98.	3.7	62
13	Normal versus Pathological Cardiac Fibroblast-Derived Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell Paracrine Properties and Commitment. Stem Cells International, 2017, 2017, 1-9.	2.5	19
14	Exosomes isolation protocols facts and artifacts for cardiac regeneration. Frontiers in Bioscience - Scholar, 2016, 8, 303-311.	2.1	11
15	Foetal bovine serum-derived exosomes affect yield and phenotype of human cardiac progenitor cell culture. BioImpacts, 2016, 6, 15-24.	1.5	26
16	Metformin increases APP expression and processing via oxidative stress, mitochondrial dysfunction and NF-κB activation: Use of insulin to attenuate metformin's effect. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1046-1059.	4.1	95
17	Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials, 2015, 61, 339-348.	11.4	265
18	Insulin Resistance as Common Molecular Denominator Linking Obesity to Alzheimer's Disease. Current Alzheimer Research, 2015, 12, 723-735.	1.4	97

#	Article	IF	CITATIONS
19	Serum and supplement optimization for <scp>EU GMP</scp> â€compliance in cardiospheres cell culture. Journal of Cellular and Molecular Medicine, 2014, 18, 624-634.	3.6	41
20	Curcumin induces apoptosis in human neuroblastoma cells via inhibition of AKT and Foxo3a nuclear translocation. Free Radical Research, 2014, 48, 1397-1408.	3.3	32
21	Different types of cultured human adult Cardiac Progenitor Cells have a high degree of transcriptome similarity. Journal of Cellular and Molecular Medicine, 2014, 18, 2147-2151.	3.6	34
22	Biochemistry and biology: Heart-to-heart to investigate cardiac progenitor cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2459-2469.	2.4	7
23	Analysis of Pregnancy-Associated Plasma Protein A Production in Human Adult Cardiac Progenitor Cells. BioMed Research International, 2013, 2013, 1-8.	1.9	15
24	From Ontogenesis to Regeneration. Progress in Molecular Biology and Translational Science, 2012, 111, 109-137.	1.7	22
25	Isolation and Expansion of Adult Cardiac Stem/Progenitor Cells in the Form of Cardiospheres from Human Cardiac Biopsies and Murine Hearts. Methods in Molecular Biology, 2012, 879, 327-338.	0.9	57
26	TGFβ-Dependent Epithelial-to-Mesenchymal Transition Is Required to Generate Cardiospheres from Human Adult Heart Biopsies. Stem Cells and Development, 2012, 21, 3081-3090.	2.1	34
27	Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials, 2012, 33, 1782-1790.	11.4	347
28	Bone marrowâ€derived cells can acquire cardiac stem cells properties in damaged heart. Journal of Cellular and Molecular Medicine, 2011, 15, 63-71.	3.6	26
29	Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials, 2011, 32, 9271-9281.	11.4	59
30	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
31	Ferritin as a reporter gene for in vivo tracking of stem cells by 1.5-T cardiac MRI in a rat model of myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2238-H2250.	3.2	71
32	Isolation and Expansion of Cardiosphereâ€Đerived Stem Cells. Current Protocols in Stem Cell Biology, 2011, 16, 2C.3.1.	3.0	12
33	Cardiosphere-Derived Cells Improve Function in the Infarcted Rat Heart for at Least 16 Weeks – an MRI Study. PLoS ONE, 2011, 6, e25669.	2.5	70
34	Evidence for the Existence of Resident Cardiac Stem Cells. , 2011, , 131-147.		0
35	Caffeine-induced Ca2+ signaling as an index of cardiac progenitor cells differentiation. Basic Research in Cardiology, 2010, 105, 737-749.	5.9	20
36	Cardiospheres and tissue engineering for myocardial regeneration: potential for clinical application. Journal of Cellular and Molecular Medicine, 2010, 14, no-no.	3.6	30

#	Article	IF	CITATIONS
37	Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice. Circulation Research, 2010, 106, 971-980.	4.5	609
38	c-kit cardiac progenitor cells: What is their potential?. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E78; author reply E79.	7.1	8
39	Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovascular Research, 2009, 82, 411-420.	3.8	104
40	New Perspectives to Repair a Broken Heart. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2009, 7, 91-107.	1.0	26
41	Stem cells in the heart: What's the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm, 2008, 5, 880-887.	0.7	49
42	Stem cells in the heart: What's the buzz all about?—Part 1: Preclinical considerations. Heart Rhythm, 2008, 5, 749-757.	0.7	44
43	lon Cyclotron Resonance as a Tool in Regenerative Medicine. Electromagnetic Biology and Medicine, 2008, 27, 127-133.	1.4	34
44	Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S9-S14.	3.3	94
45	Regenerative Potential of Cardiosphere-Derived Cells Expanded From Percutaneous Endomyocardial Biopsy Specimens. Circulation, 2007, 115, 896-908.	1.6	1,074
46	Endogenous Cardiac Stem Cells. Progress in Cardiovascular Diseases, 2007, 50, 31-48.	3.1	229
47	Endogenous Cardiac Stem Cells. , 2007, , 83-100.		1
47 48	Endogenous Cardiac Stem Cells. , 2007, , 83-100. Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left Ventricular Function. Circulation, 2007, 116, .	1.6	1
	Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left	1.6 4.5	
48	Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left Ventricular Function. Circulation, 2007, 116, .		2
4 8 49	Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left Ventricular Function. Circulation, 2007, 116, . Diabetic Cardiomyopathy. Circulation Research, 2006, 99, 1-2. Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch–Nyhan disease.	4.5	2 23
48 49 50	Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left Ventricular Function. Circulation, 2007, 116, . Diabetic Cardiomyopathy. Circulation Research, 2006, 99, 1-2. Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch–Nyhan disease. Neuroscience Letters, 2005, 375, 97-100. Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart. Circulation	4.5 2.1	2 23 26
48 49 50 51	Abstract 696: Cardiosphere-derived Cells Engraft Long-term in Infarcted Mice and Preserve Left Ventricular Function. Circulation, 2007, 116, . Diabetic Cardiomyopathy. Circulation Research, 2006, 99, 1-2. Guanine nucleotide depletion induces differentiation and aberrant neurite outgrowth in human dopaminergic neuroblastoma lines: a model for basal ganglia dysfunction in Lesch–Nyhan disease. Neuroscience Letters, 2005, 375, 97-100. Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart. Circulation Research, 2004, 95, 911-921. Guanine nucleotide depletion triggers cell cycle arrest and apoptosis in human neuroblastoma cell	4.5 2.1 4.5	2 23 26 1,374

#	Article	IF	CITATIONS
55	Cyclic Nucleotides and Neuroblastoma Differentiation. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1551-1554.	1.1	4
56	Different pattern of matrix metalloproteinases expression in alveolar versus embryonal rhabdomyosarcoma. Journal of Pediatric Surgery, 2004, 39, 1673-1679.	1.6	16
57	Surfactant Protein A-Producing Cells in Human Fetal Lung Are Good Targets for Recombinant Adenovirus-Mediated Gene Transfer. Pediatric Research, 1996, 40, 142-147.	2.3	1
58	A spectrophotometric method for the determination of 5-phosphoribosyl-1-pyrophosphate. Experientia, 1979, 35, 1016-1017.	1.2	5
59	A spectrophotometric assay for phosphoribosylpyrophosphate synthetase. Analytical Biochemistry, 1978, 89, 355-359.	2.4	8