Vytas A Bankaitis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3187458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Translational control of lipogenesis links protein synthesis and phosphoinositide signaling with nuclear division in <i>Saccharomyces cerevisiae</i> . Genetics, 2022, 220, .	2.9	7
2	New strategies for combating fungal infections: Inhibiting inositol lipid signaling by targeting Sec14 phosphatidylinositol transfer proteins. Advances in Biological Regulation, 2022, 84, 100891.	2.3	3
3	Biophysical parameters of the Sec14 phospholipid exchange cycle – Effect of lipid packing in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183450.	2.6	5
4	Emerging Prospects for Combating Fungal Infections by Targeting Phosphatidylinositol Transfer Proteins. International Journal of Molecular Sciences, 2021, 22, 6754.	4.1	7
5	Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Advances in Biological Regulation, 2020, 78, 100740.	2.3	6
6	Lipoprotein Lipase Sorting: Sphingomyelin and a Proteoglycan Show the Way. Trends in Cell Biology, 2020, 30, 170-172.	7.9	3
7	Noncanonical regulation of phosphatidylserine metabolism by a Sec14-like protein and a lipid kinase. Journal of Cell Biology, 2020, 219, .	5.2	16
8	A Sec14-like phosphatidylinositol transfer protein paralog defines a novel class of heme-binding proteins. ELife, 2020, 9, .	6.0	10
9	Correction: Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities Journal of Biological Chemistry, 2020, 295, 1368.	3.4	Ο
10	The neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk?. Journal of Biological Chemistry, 2019, 294, 19424-19435.	3.4	13
11	The Role of Phosphoinositides in Signaling and Disease: Introduction to the Thematic Review Series. Journal of Lipid Research, 2019, 60, 227-228.	4.2	1
12	The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. Journal of Lipid Research, 2019, 60, 242-268.	4.2	59
13	An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems. Current Opinion in Cell Biology, 2019, 59, 58-72.	5.4	19
14	Structural analysis of a plant fatty acid amide hydrolase provides insights into the evolutionary diversity of bioactive acylethanolamides. Journal of Biological Chemistry, 2019, 294, 7419-7432.	3.4	13
15	Functional diversification of the chemical landscapes of yeast Sec14-like phosphatidylinositol transfer protein lipid-binding cavities. Journal of Biological Chemistry, 2019, 294, 19081-19098.	3.4	17
16	Biophysical Parameters of the Sec14 Phospholipid Exchange Cycle. Biophysical Journal, 2019, 116, 92-103.	0.5	23
17	Novel Regulation of Lipid Metabolism by a Phosphatidylinositol Transfer Protein and a Phosphatidylinositol 4â€Kinase. FASEB Journal, 2019, 33, lb330.	0.5	0
18	A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Developmental Cell, 2018, 44, 378-391.e5.	7.0	30

Vytas A Bankaitis

#	Article	IF	CITATIONS
19	Target Identification and Mechanism of Action of Picolinamide and Benzamide Chemotypes with Antifungal Properties. Cell Chemical Biology, 2018, 25, 279-290.e7.	5.2	28
20	A Golgi Lipid Signaling Pathway Controls Apical Golgi Distribution and Cell Polarity during Neurogenesis. Developmental Cell, 2018, 44, 725-740.e4.	7.0	57
21	Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation. Journal of Cell Biology, 2018, 217, 269-282.	5.2	99
22	Vibrator and PI4KIIIÎ \pm govern neuroblast polarity by anchoring non-muscle myosin II. ELife, 2018, 7, .	6.0	22
23	Multiplexed precision genome editing with trackable genomic barcodes in yeast. Nature Biotechnology, 2018, 36, 512-520.	17.5	138
24	Phosphoinositide Signaling Meets Heme Biochemistry. FASEB Journal, 2018, 32, lb182.	0.5	0
25	A Reevaluation of the Role of Phosphatidylinositol Transfer Protein a in Growth Factor Signaling. FASEB Journal, 2018, 32, 540.5.	0.5	Ο
26	A Novel Multiâ€domain Phosphatidylinositol Transfer Protein/Oxysterol Binding Protein Senses Specific Phosphoinositide Pools On <i>Toxoplasma</i> Dense Granules. FASEB Journal, 2018, 32, 540.7.	0.5	0
27	Translational control of lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. EMBO Journal, 2017, 36, 487-502.	7.8	59
28	Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle. Journal of Biological Chemistry, 2017, 292, 14438-14455.	3.4	25
29	Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins. Molecular Biology of the Cell, 2016, 27, 2317-2330.	2.1	24
30	Structural elements that govern Sec14-like PITP sensitivities to potent small molecule inhibitors. Journal of Lipid Research, 2016, 57, 650-662.	4.2	15
31	Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. Journal of Lipid Research, 2016, 57, 1492-1506.	4.2	12
32	Inborn Errors of Long-Chain Fatty Acid β-Oxidation Link Neural Stem Cell Self-Renewal to Autism. Cell Reports, 2016, 14, 991-999.	6.4	95
33	Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1352-1364.	2.4	34
34	Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 724-735.	2.4	56
35	Unsaturated fatty acidâ€induced nonâ€canonical autophagy: unusual? orÂunappreciated?. EMBO Journal, 2015, 34, 978-980.	7.8	6
36	Sec14-nodulin proteins and the patterning of phosphoinositide landmarks for developmental control of membrane morphogenesis. Molecular Biology of the Cell, 2015, 26, 1764-1781.	2.1	44

VYTAS A BANKAITIS

#	Article	IF	CITATIONS
37	A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress–induced membrane biogenesis. Molecular Biology of the Cell, 2014, 25, 712-727.	2.1	71
38	Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures. Science, 2014, 344, 208-211.	12.6	217
39	Sec14-like phosphatidylinositol-transfer proteins and diversification of phosphoinositide signalling outcomes. Biochemical Society Transactions, 2014, 42, 1383-1388.	3.4	14
40	Peer review: rigor? Or rigor mortis?. EMBO Reports, 2014, 15, 818-819.	4.5	1
41	PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nature Chemical Biology, 2014, 10, 76-84.	8.0	39
42	Thoughts on Sec14-like nanoreactors and phosphoinositide signaling. Advances in Biological Regulation, 2012, 52, 115-121.	2.3	23
43	A Sterol-Binding Protein Integrates Endosomal Lipid Metabolism with TOR Signaling and Nitrogen Sensing. Cell, 2012, 148, 702-715.	28.9	83
44	Devising Powerful Genetics, Biochemical and Structural Tools in the Functional Analysis of Phosphatidylinositol Transfer Proteins (PITPs) Across Diverse Species. Methods in Cell Biology, 2012, 108, 249-302.	1.1	5
45	The oxysterol-binding protein superfamily: new concepts and old proteins. Biochemical Society Transactions, 2012, 40, 469-473.	3.4	13
46	Golgi Membrane Dynamics and Lipid Metabolism. Current Biology, 2012, 22, R414-R424.	3.9	63
47	Phosphatidylinositol Synthase and Diacylglycerol Platforms Bust a Move. Developmental Cell, 2011, 21, 810-812.	7.0	7
48	Phosphatidylinositol synthase is required for lens structural integrity and photoreceptor cell survival in the zebrafish eye. Experimental Eye Research, 2011, 93, 460-474.	2.6	16
49	Phosphatidylinositol transfer proteins: Negotiating the regulatory interface between lipid metabolism and lipid signaling in diverse cellular processes. BioFactors, 2011, 37, 290-308.	5.4	39
50	Aggregation of α-Synuclein in S. cerevisiae is Associated with Defects in Endosomal Trafficking and Phospholipid Biosynthesis. Journal of Molecular Neuroscience, 2011, 43, 391-405.	2.3	71
51	Resurrection of a functional phosphatidylinositol transfer protein from a pseudo-Sec14 scaffold by directed evolution. Molecular Biology of the Cell, 2011, 22, 892-905.	2.1	31
52	Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells. Advances in Enzyme Regulation, 2010, 50, 339-348.	2.6	8
53	The Sec14 superfamily and mechanisms for crosstalk between lipid metabolism and lipid signaling. Trends in Biochemical Sciences, 2010, 35, 150-160.	7.5	182
54	Zebrafish Class 1 Phosphatidylinositol Transfer Proteins: PITPβ and Double Cone Cell Outer Segment Integrity in Retina. Traffic, 2010, 11, 1151-1167.	2.7	54

VYTAS A BANKAITIS

#	Article	IF	CITATIONS
55	Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clinical Lipidology, 2010, 5, 867-897.	0.4	46
56	Phosphoinositide phosphatases in cell biology and disease. Progress in Lipid Research, 2010, 49, 201-217.	11.6	102
57	The Cirque du Soleil of Golgi membrane dynamics. Journal of Cell Biology, 2009, 186, 169-171.	5.2	25
58	Functional studies of the mammalian Sac1 phosphoinositide phosphatase. Advances in Enzyme Regulation, 2009, 49, 75-86.	2.6	19
59	Functional Anatomy of Phospholipid Binding andÂRegulation of Phosphoinositide Homeostasis by Proteins of the Sec14 Superfamily. Molecular Cell, 2008, 29, 191-206.	9.7	210
60	Lipidology: bridge between basic science and clinical pathology. Future Lipidology, 2008, 3, 611-623.	0.5	0
61	Regulation of Phosphoinositide Levels by the Phospholipid Transfer Protein Sec14p Controls Cdc42p/p21-Activated Kinase-Mediated Cell Cycle Progression at Cytokinesis. Eukaryotic Cell, 2007, 6, 1814-1823.	3.4	10
62	The pathologies associated with functional titration of phosphatidylinositol transfer protein α activity in mice. Journal of Lipid Research, 2007, 48, 1857-1872.	4.2	27
63	Conformational Dynamics of the Major Yeast Phosphatidylinositol Transfer Protein Sec14p: Insight into the Mechanisms of Phospholipid Exchange and Diseases of Sec14p-Like Protein Deficiencies. Molecular Biology of the Cell, 2007, 18, 1928-1942.	2.1	55
64	Local Polarity and Hydrogen Bonding Inside the Sec14p Phospholipid-Binding Cavity: High-Field Multi-Frequency Electron Paramagnetic Resonance Studies. Biophysical Journal, 2007, 92, 3686-3695.	0.5	53
65	Phosphatidylinositol transfer proteins and functional specification of lipid signaling pools. Advances in Enzyme Regulation, 2007, 47, 27-40.	2.6	12
66	Activation of the Phosphatidylinositol 3-Kinase Vps34 by a G Protein α Subunit at the Endosome. Cell, 2006, 126, 191-203.	28.9	202
67	Phosphatidylinositol transfer proteins and cellular nanoreactors for lipid signaling. Nature Chemical Biology, 2006, 2, 576-583.	8.0	65
68	The Chemistry of Phospholipid Binding by the Saccharomyces cerevisiae Phosphatidylinositol Transfer Protein Sec14p as Determined by EPR Spectroscopy. Journal of Biological Chemistry, 2006, 281, 34897-34908.	3.4	19
69	The Diverse Biological Functions of Phosphatidylinositol Transfer Proteins in Eukaryotes. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 21-49.	5.2	93
70	Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae. Advances in Enzyme Regulation, 2005, 45, 155-170.	2.6	30
71	Nonclassical PITPs Activate PLD via the Stt4p PtdIns-4-kinase and Modulate Function of Late Stages of Exocytosis in Vegetative Yeast. Traffic, 2005, 6, 1157-1172.	2.7	62
72	A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. Journal of Cell Biology, 2005, 168, 801-812.	5.2	195

Vytas A Bankaitis

#	Article	IF	CITATIONS
73	Phosphatidylinositol transfer protein function in the mouse. Advances in Enzyme Regulation, 2004, 44, 201-218.	2.6	4
74	Biological functions of phosphatidylinositol transfer proteins. Biochemistry and Cell Biology, 2004, 82, 254-262.	2.0	57
75	Lipids and the exocytotic machinery of eukaryotic cells. Current Opinion in Cell Biology, 2003, 15, 389-395.	5.4	54
76	Mice Lacking Phosphatidylinositol Transfer Protein-α Exhibit Spinocerebellar Degeneration, Intestinal and Hepatic Steatosis, and Hypoglycemia. Journal of Biological Chemistry, 2003, 278, 33501-33518.	3.4	103
77	Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. Journal of Cell Biology, 2002, 157, 63-78.	5.2	219
78	CELL BIOLOGY: Slick Recruitment to the Golgi. Science, 2002, 295, 290-291.	12.6	52
79	Activity of Specific Lipid-regulated ADP Ribosylation Factor-GTPase-activating Proteins Is Required for Sec14p-dependent Golgi Secretory Function in Yeast. Molecular Biology of the Cell, 2002, 13, 2193-2206.	2.1	72
80	The <i>Schizosaccharomyces pombe spo20⁺</i> Gene Encoding a Homologue of <i>Saccharomyces cerevisiae</i> Sec14 Plays an Important Role in Forespore Membrane Formation. Molecular Biology of the Cell, 2001, 12, 901-917.	2.1	74
81	Evidence for an Intrinsic Toxicity of Phosphatidylcholine to Sec14p-dependent Protein Transport from the Yeast Golgi Complex. Molecular Biology of the Cell, 2001, 12, 1117-1129.	2.1	60
82	Nodule-Specific Regulation of Phosphatidylinositol Transfer Protein Expression in Lotus japonicus. Plant Cell, 2001, 13, 1369-1382.	6.6	16
83	Phospholipid transfer proteins and physiological functions. International Review of Cytology, 2000, 197, 35-81.	6.2	11
84	Lipid Metabolism and Regulation of Membrane Trafficking. Traffic, 2000, 1, 195-202.	2.7	121
85	A New Gene Involved in the Transport-dependent Metabolism of Phosphatidylserine, PSTB2/PDR17, Shares Sequence Similarity with the Gene Encoding the Phosphatidylinositol/Phosphatidylcholine Transfer Protein,SEC14. Journal of Biological Chemistry, 2000, 275, 14446-14456.	3.4	73
86	Functional Characterization of a Mammalian Sac1 and Mutants Exhibiting Substrate-specific Defects in Phosphoinositide Phosphatase Activity. Journal of Biological Chemistry, 2000, 275, 34293-34305.	3.4	123
87	Identification of a Novel Family of Nonclassic Yeast Phosphatidylinositol Transfer Proteins Whose Function Modulates Phospholipase D Activity and Sec14p-independent Cell Growth. Molecular Biology of the Cell, 2000, 11, 1989-2005.	2.1	140
88	Pleiotropic Alterations in Lipid Metabolism in Yeast <i>sac1</i> Mutants: Relationship to "Bypass Sec14p― and Inositol Auxotrophy. Molecular Biology of the Cell, 1999, 10, 2235-2250.	2.1	138
89	Yeast Sec14p Deficient in Phosphatidylinositol Transfer Activity Is Functional In Vivo. Molecular Cell, 1999, 4, 187-197.	9.7	131
90	Enhancement of phosphoinositide 3-kinase (PI 3-kinase) activity by membrane curvature and inositol-phospholipid-binding peptides. FEBS Journal, 1998, 258, 846-853.	0.2	64

VYTAS A BANKAITIS

#	Article	IF	CITATIONS
91	Phosphatidylinositol transfer proteins: the long and winding road to physiological function. Trends in Cell Biology, 1998, 8, 276-282.	7.9	80
92	Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol- transfer protein. Nature, 1998, 391, 506-510.	27.8	260
93	A Phosphatidylinositol 3-Kinase and Phosphatidylinositol Transfer Protein Act Synergistically in Formation of Constitutive Transport Vesicles from the Trans-Golgi Network. Journal of Biological Chemistry, 1998, 273, 10349-10354.	3.4	82
94	The Phosphatidylinositol Transfer Protein Domain of <i>Drosophila</i> Retinal Degeneration B Protein Is Essential for Photoreceptor Cell Survival and Recovery from Light Stimulation. Journal of Cell Biology, 1997, 139, 351-363.	5.2	142
95	Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature, 1997, 387, 101-105.	27.8	264
96	Phospholipid metabolism and membrane dynamics. Current Opinion in Cell Biology, 1996, 8, 534-541.	5.4	59
97	The Yeast <i>BSD2-1</i> Mutation Influences Both the Requirement for Phosphatidylinositol Transfer Protein Function and Derepression of Phospholipid Biosynthetic Gene Expression in Yeast. Genetics, 1996, 143, 685-697.	2.9	19
98	A role for phosphatidylinositol transfer protein in secretory vesicle formation. Nature, 1995, 377, 544-547.	27.8	193
99	Secretory Pathway Function in Saccharomyces cerevisiae. Advances in Microbial Physiology, 1992, 33, 73-144.	2.4	23
100	Mechanistic insights relevant to protein secretion in yeast. Current Opinion in Genetics and Development, 1992, 2, 775-779.	3.3	1
101	Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell, 1991, 64, 789-800.	28.9	363
102	Phospholipid transfer proteins: a biological debut. Trends in Cell Biology, 1991, 1, 30-34.	7.9	165
103	An essential role for a phospholipid transfer protein in yeast Golgi function. Nature, 1990, 347, 561-562.	27.8	556
104	The antifolding activity of SecB promotes the export of the E. coli maltose-binding protein. Cell, 1988, 53, 273-283.	28.9	366
105	Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell, 1987, 48, 875-885.	28.9	340
106	Chapter 3 The Use of Genetic Techniques to Analyze Protein Export in Escherichia coli. Current Topics in Membranes and Transport, 1985, 24, 105-150.	0.6	48
107	Intragenic suppressor mutations that restore export of maltose binding protein with a truncated signal peptide. Cell, 1984, 37, 243-252.	28.9	115
108	Imidazole acetic acid as a substitute for cAMP. Biochemical and Biophysical Research Communications, 1979, 87, 566-574.	2.1	17