
Ludwig J Aigner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3187031/publications.pdf Version: 2024-02-01

LUDWIC LAICNER

#	Article	IF	CITATIONS
1	The serum metabolome mediates the concert of diet, exercise, and neurogenesis, determining the risk for cognitive decline and dementia. Alzheimer's and Dementia, 2022, 18, 654-675.	0.8	12
2	Safe and Effective Cynomolgus Monkey GLP—Tox Study with Repetitive Intrathecal Application of a TGFBR2 Targeting LNA-Gapmer Antisense Oligonucleotide as Treatment Candidate for Neurodegenerative Disorders. Pharmaceutics, 2022, 14, 200.	4.5	2
3	Targeting TGF-ß in the Central Nervous System: Assessment of Cynomolgus Monkey—Toxicity and Pharmacokinetics for an LNA-Antisense Oligonucleotide. Applied Sciences (Switzerland), 2022, 12, 973.	2.5	0
4	Subarachnoid Fibrosis in Human Post-Traumatic Syringomyelia: A Prospective Observational Clinical Study. Journal of Neuropathology and Experimental Neurology, 2022, 81, 149-153.	1.7	2
5	Apolipoprotein E and sex modulate fatty acid metabolism in a prospective observational study of cognitive decline. Alzheimer's Research and Therapy, 2022, 14, 1.	6.2	31
6	Allergy-induced systemic inflammation impairs tendon quality. EBioMedicine, 2022, 75, 103778.	6.1	2
7	Leukotriene Signaling as a Target in α-Synucleinopathies. Biomolecules, 2022, 12, 346.	4.0	5
8	Routine Blood Chemistry Predicts Functional Recovery After Traumatic Spinal Cord Injury: A Post Hoc Analysis. Neurorehabilitation and Neural Repair, 2021, 35, 321-333.	2.9	7
9	Modeling and Bioinformatics Identify Responders to G-CSF in Patients With Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2021, 12, 616289.	2.4	2
10	The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice. International Journal of Molecular Sciences, 2021, 22, 2782.	4.1	15
11	Reconditioning the Neurogenic Niche of Adult Non-human Primates by Antisense Oligonucleotide-Mediated Attenuation of TGFβ Signaling. Neurotherapeutics, 2021, 18, 1963-1979.	4.4	4
12	Cognitive Effects of Montelukast: A Pharmaco-EEG Study. Brain Sciences, 2021, 11, 547.	2.3	3
13	Differential acute impact of therapeutically effective and overdose concentrations of lithium on human neuronal single cell and network function. Translational Psychiatry, 2021, 11, 281.	4.8	9
14	Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discovery Today, 2021, 26, 1642-1655.	6.4	16
15	Serum Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein Are Related to the Neurological Impairment and Spinal Edema after Traumatic Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 3431-3439.	3.4	9
16	Neuroregenerative Potential of Prenyl- and Pyranochalcones: A Structure–Activity Study. Journal of Natural Products, 2021, 84, 2675-2682.	3.0	7
17	Early signature in the blood lipidome associated with subsequent cognitive decline in the elderly: A case-control analysis nested within the Three-City cohort study. EBioMedicine, 2021, 64, 103216.	6.1	20
18	Improved Bioavailability of Montelukast through a Novel Oral Mucoadhesive Film in Humans and Mice. Pharmaceutics, 2021, 13, 12.	4.5	10

#	Article	IF	CITATIONS
19	Food and Microbiota Metabolites Associate with Cognitive Decline in Older Subjects: A 12‥ear Prospective Study. Molecular Nutrition and Food Research, 2021, 65, e2100606.	3.3	17
20	Inhibition of the cysteinyl leukotriene pathways increases survival of RGCs and reduces microglial activation in ocular hypertension. Experimental Eye Research, 2021, 213, 108806.	2.6	7
21	CD4 ⁺ T cells contribute to neurodegeneration in Lewy body dementia. Science, 2021, 374, 868-874.	12.6	92
22	Chronobiological activity of cysteinyl leukotriene receptor 1 during basal and induced autophagy in the ARPE-19 retinal pigment epithelial cell line. Aging, 2021, 13, 25670-25693.	3.1	4
23	Functional Integration of Neuronal Precursors in the Adult Murine Piriform Cortex. Cerebral Cortex, 2020, 30, 1499-1515.	2.9	35
24	Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature, 2020, 577, 399-404.	27.8	537
25	Early sacral neuromodulation ameliorates urinary bladder function and structure in complete spinal cord injury minipigs. Neurourology and Urodynamics, 2020, 39, 586-593.	1.5	16
26	Cysteinyl leukotriene receptor 1 modulates autophagic activity in retinal pigment epithelial cells. Scientific Reports, 2020, 10, 17659.	3.3	8
27	A possible effect of montelukast on neurological aging examined by the use of register data. International Journal of Clinical Pharmacy, 2020, 43, 541-548.	2.1	9
28	Microglia depletion diminishes key elements of the leukotriene pathway in the brain of Alzheimer's Disease mice. Acta Neuropathologica Communications, 2020, 8, 129.	5.2	21
29	Caffeine Compromises Proliferation of Human Hippocampal Progenitor Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 806.	3.7	11
30	Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline. Translational Psychiatry, 2020, 10, 256.	4.8	39
31	DCX+ neuronal progenitors contribute to new oligodendrocytes during remyelination in the hippocampus. Scientific Reports, 2020, 10, 20095.	3.3	16
32	CD8+ T-cells infiltrate Alzheimer's disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain, Behavior, and Immunity, 2020, 89, 67-86.	4.1	112
33	Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2—A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. International Journal of Molecular Sciences, 2020, 21, 1952.	4.1	19
34	Platelets in Amyloidogenic Mice Are Activated and Invade the Brain. Frontiers in Neuroscience, 2020, 14, 129.	2.8	13
35	The Leukotriene Receptor Antagonist Montelukast Reduces Alpha-Synuclein Load and Restores Memory in an Animal Model of Dementia with Lewy Bodies. Neurotherapeutics, 2020, 17, 1061-1074.	4.4	17
36	Biomarkers in Traumatic Spinal Cord Injury—Technical and Clinical Considerations: A Systematic Review. Neurorehabilitation and Neural Repair, 2020, 34, 95-110.	2.9	34

#	Article	IF	CITATIONS
37	Lipid-droplet-accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain. Nature Neuroscience, 2020, 23, 194-208.	14.8	558
38	TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia?. , 2020, 11, 828.		46
39	The Leukotriene Receptor Antagonist Montelukast as a Potential COVID-19 Therapeutic. Frontiers in Molecular Biosciences, 2020, 7, 610132.	3.5	26
40	The Prenylflavonoid ENDF1 Overrules Central Nervous System Growth Inhibitors and Facilitates Regeneration of DRG Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 332.	3.7	11
41	Dietâ€Related Metabolites Associated with Cognitive Decline Revealed by Untargeted Metabolomics in a Prospective Cohort. Molecular Nutrition and Food Research, 2019, 63, e1900177.	3.3	40
42	Genetic reprogramming of somatic cells into neuroblasts through a co-induction of the doublecortin gene along the Yamanaka factors: A promising approach to model neuroregenerative disorders. Medical Hypotheses, 2019, 127, 105-111.	1.5	2
43	Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination. Clia, 2019, 67, 1510-1525.	4.9	28
44	Improvement of fiber connectivity and functional recovery after stroke by montelukast, an available and safe anti-asthmatic drug. Pharmacological Research, 2019, 142, 223-236.	7.1	35
45	Pericytes Favor Oligodendrocyte Fate Choice in Adult Neural Stem Cells. Frontiers in Cellular Neuroscience, 2019, 13, 85.	3.7	19
46	Extracellular Vesicles Can Deliver Anti-inflammatory and Anti-scarring Activities of Mesenchymal Stromal Cells After Spinal Cord Injury. Frontiers in Neurology, 2019, 10, 1225.	2.4	61
47	Dimethylsulfoxide Inhibits Oligodendrocyte Fate Choice of Adult Neural Stem and Progenitor Cells. Frontiers in Neuroscience, 2019, 13, 1242.	2.8	6
48	The leukotriene signaling pathway: a druggable target in Alzheimer's disease. Drug Discovery Today, 2019, 24, 505-516.	6.4	48
49	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	11.1	601
50	Doublecortin expression in CD8+ Tâ€cells and microglia at sites of amyloidâ€Î² plaques: A potential role in shaping plaque pathology?. Alzheimer's and Dementia, 2018, 14, 1022-1037.	0.8	36
51	Cystometric and External Urethral Sphincter Measurements in Awake Rats with Implanted Catheter and Electrodes Allowing for Repeated Measurements. Journal of Visualized Experiments, 2018, , .	0.3	3
52	A new technique for minimal invasive complete spinal cord injury in minipigs. Acta Neurochirurgica, 2018, 160, 459-465.	1.7	11
53	Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts. Heliyon, 2018, 4, e00540.	3.2	13
54	P3â€036: REPURPOSING OF MONTELUKAST FOR THE TREATMENT OF ALZHEIMER'S DISEASE: INTELGENX INITIATES PHASE 2A MONTELUKAST VERSAFILMâ"¢ CLINICAL TRIAL IN ALZHEIMER'S PATIENTS. Alzheimer's and Dementia, 2018, 14, P1078.	0.8	3

#	Article	IF	CITATIONS
55	Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics, 2018, 8, 5400-5418.	10.0	48
56	Age Influences Microglial Activation After Cuprizone-Induced Demyelination. Frontiers in Aging Neuroscience, 2018, 10, 278.	3.4	29
57	Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. Journal of Neuroinflammation, 2018, 15, 274.	7.2	89
58	Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8765-E8774.	7.1	47
59	Cellular Plasticity in the Adult Murine Piriform Cortex: Continuous Maturation of Dormant Precursors Into Excitatory Neurons. Cerebral Cortex, 2018, 28, 2610-2621.	2.9	48
60	Proseek single-plex protein assay kit system to detect sAxl and Gas6 in serological material of brain tumor patients. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00252.	4.4	4
61	Retinal Pericytes: Characterization of Vascular Development-Dependent Induction Time Points in an Inducible NG2 Reporter Mouse Model. Current Eye Research, 2018, 43, 1274-1285.	1.5	5
62	Reactive Neuroblastosis in Huntington's Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain. Frontiers in Cellular Neuroscience, 2018, 12, 37.	3.7	25
63	Neuroplasticity, limbic neuroblastosis and neuro-regenerative disorders. Neural Regeneration Research, 2018, 13, 1322.	3.0	16
64	SMAD7 deficiency stimulates Müller progenitor cell proliferation during the development of the mammalian retina. Histochemistry and Cell Biology, 2017, 148, 21-32.	1.7	9
65	Neurogenesis upregulation on the healthy hemisphere after stroke enhances compensation for age-dependent decrease of basal neurogenesis. Neurobiology of Disease, 2017, 99, 47-57.	4.4	36
66	Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination. Cell Reports, 2017, 20, 1755-1764.	6.4	100
67	The Austrian Spinal Cord Injury Study: a registry for patients living with a traumatic spinal cord injury. Spinal Cord Series and Cases, 2017, 3, 17076.	0.6	2
68	[P2–010]: REPURPOSING OF THE ANTIâ€ASTHMATIC DRUG MONTELUKAST FOR THE TREATMENT OF ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2017, 13, P607.	0.8	0
69	[P3–130]: IMMUNE CELL INTERACTIONS IN AMYLOIDâ€BETA PLAQUE PATHOLOGY. Alzheimer's and Dementia, 2017, 13, P984.	0.8	0
70	[P1–166]: THE ANTIâ€ASTHMATIC DRUG MONTELUKAST ALTERS MICROGLIA PHENOTYPE AND SYNUCLEOPATI AND RESTORES LEARNING AND MEMORY IN AN ANIMAL MODEL OF LEWY BODY DEMENTIA. Alzheimer's and Dementia, 2017, 13, P307.	HY, 0.8	0
71	Editorial: The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration. Frontiers in Cell and Developmental Biology, 2017, 5, 88.	3.7	5
72	The TGF-Î ² System As a Potential Pathogenic Player in Disease Modulation of Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2017, 8, 669.	2.4	42

#	Article	IF	CITATIONS
73	Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety. Frontiers in Neuroscience, 2017, 11, 27.	2.8	39
74	Brain and Retinal Pericytes: Origin, Function and Role. Frontiers in Cellular Neuroscience, 2016, 10, 20.	3.7	187
75	Human Cerebrospinal Fluid Promotes Neuronal Viability and Activity of Hippocampal Neuronal Circuits In Vitro. Frontiers in Cellular Neuroscience, 2016, 10, 54.	3.7	13
76	Allergy Enhances Neurogenesis and Modulates Microglial Activation in the Hippocampus. Frontiers in Cellular Neuroscience, 2016, 10, 169.	3.7	27
77	Early Changes in Hippocampal Neurogenesis in Transgenic Mouse Models for Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 5796-5806.	4.0	71
78	Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?. Frontiers in Biology, 2016, 11, 193-213.	0.7	28
79	Nontraumatic spinal cord injury at the neurological intensive care unit: spectrum, causes of admission and predictors of mortality. Therapeutic Advances in Neurological Disorders, 2016, 9, 85-94.	3.5	20
80	Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. Journal of Extracellular Vesicles, 2015, 4, 30087.	12.2	1,020
81	Reduction in Subventricular Zone-Derived Olfactory Bulb Neurogenesis in a Rat Model of Huntington's Disease Is Accompanied by Striatal Invasion of Neuroblasts. PLoS ONE, 2015, 10, e0116069.	2.5	34
82	Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Experimental Eye Research, 2015, 136, 59-71.	2.6	40
83	Neurodifferentiating Potential of 8-Prenylnaringenin and Related Compounds in Neural Precursor Cells and Correlation with Estrogen-Like Activity. Planta Medica, 2015, 81, 305-311.	1.3	12
84	Lesion-Induced Accumulation of Platelets Promotes Survival of Adult Neural Stem / Progenitor Cells. Experimental Neurology, 2015, 269, 75-89.	4.1	33
85	Heterozygous modulation of TGF-β signaling does not influence Müller glia cell reactivity or proliferation following NMDA-induced damage. Histochemistry and Cell Biology, 2015, 144, 443-455.	1.7	21
86	Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nature Communications, 2015, 6, 8466.	12.8	139
87	The L-type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium, 2015, 58, 606-616.	2.4	55
88	Beyond Clotting: A Role of Platelets in CNS Repair?. Frontiers in Cellular Neuroscience, 2015, 9, 511.	3.7	20
89	Impaired TGF-Î ² induced growth inhibition contributes to the increased proliferation rate of neural stem cells harboring mutant p53. American Journal of Cancer Research, 2015, 5, 3436-45.	1.4	5
90	Cerebrolysin protects PC12 cells from CoCl ₂ â€induced hypoxia employing GSK3β signaling. International Journal of Developmental Neuroscience, 2014, 38, 52-58.	1.6	30

#	Article	IF	CITATIONS
91	Characterization of dsRed2-positive cells in the doublecortin-dsRed2 transgenic adult rat retina. Histochemistry and Cell Biology, 2014, 142, 601-617.	1.7	12
92	Lactationâ€induced reduction in hippocampal neurogenesis is reversed by repeated stress exposure. Hippocampus, 2014, 24, 673-683.	1.9	43
93	TGFâ€beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. Journal of Cellular and Molecular Medicine, 2014, 18, 1444-1459.	3.6	118
94	The Maternal Brain: An Organ with Peripartal Plasticity. Neural Plasticity, 2014, 2014, 1-20.	2.2	94
95	Hippocampal Neurogenesis and Antidepressive Therapy: Shocking Relations. Neural Plasticity, 2014, 2014, 1014.	2.2	64
96	Rat choroidal pericytes as a target of the autonomic nervous system. Cell and Tissue Research, 2014, 356, 1-8.	2.9	13
97	Intrinsically Active and Pacemaker Neurons in Pluripotent Stem Cell-Derived Neuronal Populations. Stem Cell Reports, 2014, 2, 323-336.	4.8	32
98	Age-dependent and differential effects of Smad7î"Ex1 on neural progenitor cell proliferation and on neurogenesis. Experimental Gerontology, 2014, 57, 149-154.	2.8	13
99	Sexâ€dependent regulation of hippocampal neurogenesis under basal and chronic stress conditions in rats. Hippocampus, 2013, 23, 476-487.	1.9	60
100	Neurogenesis and neuronal regeneration in status epilepticus. Epilepsia, 2013, 54, 40-42.	5.1	19
101	Chroman-like cyclic prenylflavonoids promote neuronal differentiation and neurite outgrowth and are neuroprotective. Journal of Nutritional Biochemistry, 2013, 24, 1953-1962.	4.2	58
102	Bone morphogenetic proteins prevent bone marrow stromal cell-mediated oligodendroglial differentiation of transplanted adult neural progenitor cells in the injured spinal cord. Stem Cell Research, 2013, 11, 758-771.	0.7	18
103	Brain pericyte plasticity as a potential drug target in CNS repair. Drug Discovery Today, 2013, 18, 456-463.	6.4	46
104	Stem cell metabolic and spectroscopic profiling. Trends in Biotechnology, 2013, 31, 204-213.	9.3	34
105	Transforming growth factor-β1 primes proliferating adult neural progenitor cells to electrophysiological functionality. Glia, 2013, 61, 1767-1783.	4.9	13
106	Neural Crest Origin of Retinal and Choroidal Pericytes. , 2013, 54, 7910.		67
107	Mesenchymal Stem Cell Conditioning Promotes Rat Oligodendroglial Cell Maturation. PLoS ONE, 2013, 8, e71814.	2.5	45
108	Tendons from Non-diabetic Humans and Rats Harbor a Population of Insulin-producing, Pancreatic Beta Cell-like Cells. Hormone and Metabolic Research, 2012, 44, 506-510.	1.5	11

#	Article	IF	CITATIONS
109	Mesenchymal Stem Cells Prime Proliferating Adult Neural Progenitors Toward an Oligodendrocyte Fate. Stem Cells and Development, 2012, 21, 1838-1851.	2.1	55
110	SoxC Transcription Factors Are Required for Neuronal Differentiation in Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2012, 32, 3067-3080.	3.6	140
111	Gene Expression Profiling of Neural Stem Cells and Their Neuronal Progeny Reveals IGF2 as a Regulator of Adult Hippocampal Neurogenesis. Journal of Neuroscience, 2012, 32, 3376-3387.	3.6	173
112	<i>In situ</i> labeling and imaging of endogenous neural stem cell proliferation and migration. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 663-679.	6.1	20
113	p57kip2 regulates glial fate decision in adult neural stem cells. Development (Cambridge), 2012, 139, 3306-3315.	2.5	27
114	Querschnittslämung muss heilbar werden – das ambitionierte Ziel der Wings for Life Stiftung. Sports Orthopaedics and Traumatology, 2012, 28, 66-73.	0.1	0
115	Adult mesenchymal stem cell therapy for myelin repair in Multiple Sclerosis. Biological Research, 2012, 45, 257-268.	3.4	42
116	The remyelination Philosopher's Stone: stem and progenitor cell therapies for multiple sclerosis. Cell and Tissue Research, 2012, 349, 331-347.	2.9	34
117	Neural stem cells for spinal cord repair. Cell and Tissue Research, 2012, 349, 349-362.	2.9	53
118	The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 2011, 477, 90-94.	27.8	1,453
119	Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington's Disease. Neurology Research International, 2011, 2011, 1-13.	1.3	38
120	In Vivo Monitoring of Adult Neurogenesis in Health and Disease. Frontiers in Neuroscience, 2011, 5, 67.	2.8	32
121	<i>In vivo</i> imaging of adult neurogenesis. European Journal of Neuroscience, 2011, 33, 1037-1044.	2.6	21
122	¹ H-Nuclear Magnetic Resonance Spectroscopy of Glioblastoma Cancer Stem Cells. Stem Cells and Development, 2011, 20, 2189-2195.	2.1	16
123	The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell and Tissue Research, 2011, 345, 313-328.	2.9	99
124	Identity, Fate and Potential of Cells Grown as Neurospheres: Species Matters. Stem Cell Reviews and Reports, 2011, 7, 815-835.	5.6	21
125	Neurogenesis, Cellular Plasticity and Cognition: The Impact of Stem Cells in the Adult and Aging Brain – A Mini-Review. Gerontology, 2011, 57, 559-564.	2.8	62
126	Inhibition of Leukotriene Receptors Boosts Neural Progenitor Proliferation. Cellular Physiology and Biochemistry, 2011, 28, 793-804.	1.6	32

#	Article	IF	CITATIONS
127	Remyelination in Multiple Sclerosis: The Therapeutic Potential of Neural and Mesenchymal Stem/Progenitor Cells. Current Signal Transduction Therapy, 2011, 6, 293-313.	0.5	3
128	Stem Cell Quiescence in the Hippocampal Neurogenic Niche Is Associated With Elevated Transforming Growth Factor-Î ² Signaling in an Animal Model of Huntington Disease. Journal of Neuropathology and Experimental Neurology, 2010, 69, 717-728.	1.7	86
129	Smad7 Regulates the Adult Neural Stem/Progenitor Cell Pool in a Transforming Growth Factor β- and Bone Morphogenetic Protein-Independent Manner. Molecular and Cellular Biology, 2010, 30, 3685-3694.	2.3	23
130	Deciphering the Oligodendrogenic Program of Neural Progenitors: Cell Intrinsic and Extrinsic Regulators. Stem Cells and Development, 2010, 19, 595-606.	2.1	33
131	A powerful transgenic tool for fate mapping and functional analysis of newly generated neurons. BMC Neuroscience, 2010, 11, 158.	1.9	50
132	Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease. BMC Neuroscience, 2010, 11, 114.	1.9	60
133	Mesenchymal Stem Cells Promote Oligodendroglial Differentiation in Hippocampal Slice Cultures. Cellular Physiology and Biochemistry, 2009, 24, 317-324.	1.6	30
134	Prolactin Induces MAPK Signaling in Neural Progenitors without Alleviating Glucocorticoid-Induced Inhibition of in vitro Neurogenesis. Cellular Physiology and Biochemistry, 2009, 24, 397-406.	1.6	15
135	Prolactin Prevents Chronic Stress-Induced Decrease of Adult Hippocampal Neurogenesis and Promotes Neuronal Fate. Journal of Neuroscience, 2009, 29, 1826-1833.	3.6	123
136	A Nuclear Magnetic Resonance Biomarker for Neural Progenitor Cells: Is It All Neurogenesis?. Stem Cells, 2009, 27, 420-423.	3.2	44
137	Striatal transplantation for multiple system atrophy — Are grafts affected by α-synucleinopathy?. Experimental Neurology, 2009, 219, 368-371.	4.1	28
138	Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Experimental Neurology, 2009, 219, 543-552.	4.1	133
139	Ageing abolishes the effects of fluoxetine on neurogenesis. Molecular Psychiatry, 2009, 14, 856-864.	7.9	124
140	TGF-beta in neural stem cells and in tumors of the central nervous system. Cell and Tissue Research, 2008, 331, 225-241.	2.9	91
141	Lineage Selection of Functional and Cryopreservable Human Embryonic Stem Cell-Derived Neurons. Stem Cells, 2008, 26, 1705-1712.	3.2	37
142	Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. Journal of Neurochemistry, 2008, 107, 832-843.	3.9	44
143	Human in vitro reporter model of neuronal development and early differentiation processes. BMC Neuroscience, 2008, 9, 31.	1.9	34
144	Novel role for SLPI in MOG-induced EAE revealed by spinal cord expression analysis. Journal of Neuroinflammation, 2008, 5, 20.	7.2	45

#	Article	IF	CITATIONS
145	Dopaminergic Lesion Enhances Growth Factor-Induced Striatal Neuroblast Migration. Journal of Neuropathology and Experimental Neurology, 2008, 67, 105-116.	1.7	52
146	In Vivo Optical Imaging of Neurogenesis: Watching New Neurons in the Intact Brain. Molecular Imaging, 2008, 7, 7290.2008.0004.	1.4	56
147	Retinal Research: Application to Clinical Practice. , 2008, , 185-202.		0
148	In vivo optical imaging of neurogenesis: watching new neurons in the intact brain. Molecular Imaging, 2008, 7, 28-34.	1.4	30
149	CD133+ and CD133â^' Glioblastoma-Derived Cancer Stem Cells Show Differential Growth Characteristics and Molecular Profiles. Cancer Research, 2007, 67, 4010-4015.	0.9	1,027
150	Schutz oder Neuaufbau: Neuroprotektive Effekte des Transforming Growth Faktorsβ1 auf Kosten einer reduzierten Neurogenese?. E-Neuroforum, 2007, 13, 4-12.	0.1	1
151	Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Research, 2007, 1155, 24-33.	2.2	76
152	Novel POMGnT1 mutations define broader phenotypic spectrum of muscle–eye–brain disease. Neurogenetics, 2007, 8, 279-288.	1.4	60
153	Autologous adult rodent neural progenitor cell transplantation represents a feasible strategy to promote structural repair in the chronically injured spinal cord. Regenerative Medicine, 2006, 1, 255-266.	1.7	47
154	Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Experimental Neurology, 2006, 197, 113-121.	4.1	141
155	Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells. Neuroscience Letters, 2006, 406, 49-54.	2.1	31
156	Transforming Growth Factor-β1 Is a Negative Modulator of Adult Neurogenesis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 358-370.	1.7	153
157	Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. European Journal of Neuroscience, 2006, 24, 1535-1545.	2.6	111
158	Mesenchymal Stem Cells Instruct Oligodendrogenic Fate Decision on Adult Neural Stem Cells. Stem Cells, 2006, 24, 2209-2219.	3.2	161
159	Neuronal precursor-specific activity of a human doublecortin regulatory sequence. Journal of Neurochemistry, 2005, 92, 264-282.	3.9	87
160	Doublecortin expression levels in adult brain reflect neurogenesis. European Journal of Neuroscience, 2005, 21, 1-14.	2.6	872
161	Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Research, 2005, 1040, 98-111.	2.2	71
162	Mitotic impairment by doublecortin is diminished by doublecortin mutations found in patients. Neurogenetics, 2004, 5, 83-93.	1.4	7

#	Article	IF	CITATIONS
163	The neurogenic competence of progenitors from the postnatal rat retina in vitro. Experimental Eye Research, 2004, 78, 1025-1036.	2.6	39
164	Human Wild-Type α-Synuclein Impairs Neurogenesis. Journal of Neuropathology and Experimental Neurology, 2004, 63, 1155-1166.	1.7	143
165	Direct Stimulation of Adult Neural Stem Cells In Vitro and Neurogenesis In Vivo by Vascular Endothelial Growth Factor. Brain Pathology, 2004, 14, 237-248.	4.1	319
166	Transient expression of doublecortin during adult neurogenesis. Journal of Comparative Neurology, 2003, 467, 1-10.	1.6	1,353
167	Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. European Journal of Neuroscience, 2003, 18, 743-751.	2.6	193
168	High Efficacy of Clonal Growth and Expansion of Adult Neural Stem Cells. Laboratory Investigation, 2003, 83, 949-962.	3.7	185
169	Mutational and expression analysis of the reelin pathway components CDK5 and doublecortin in gangliogliomas. Acta Neuropathologica, 2002, 104, 403-408.	7.7	25
170	Preweaning enrichment has no lasting effects on adult hippocampal neurogenesis in four-month-old mice. Genes, Brain and Behavior, 2002, 1, 46-54.	2.2	38
171	Molecular Mechanisms of Neuronal Migration Disorders, Quo Vadis?. Current Molecular Medicine, 2001, 1, 677-688.	1.3	40
172	Isolated Lissencephaly Sequence and Double-Cortex Syndrome in a German Family with a Novel Doublecortin Mutation. Neuropediatrics, 2000, 31, 195-198.	0.6	13
173	Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3978-3983.	7.1	384
174	Intrinsic Neuronal Determinants Locally Regulate Extrasynaptic and Synaptic Growth at the Adult Neuromuscular Junction. Journal of Cell Biology, 1997, 136, 679-692.	5.2	75
175	Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones Journal of Cell Biology, 1995, 128, 647-660.	5.2	174
176	Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell, 1995, 83, 269-278.	28.9	676
177	Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones Journal of Cell Biology, 1993, 123, 417-429.	5.2	169