Leon O Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Compact and Continuous Reformulation of the Strachan TaO _x Memristor Model With Improved Numerical Stability. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1266-1277.	5.4	8
2	Edge of Chaos Theory Resolves Smale Paradox. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1252-1265.	5.4	28
3	Research Progress on Memristor: From Synapses to Computing Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 1845-1857.	5.4	44
4	Using Self-Heating Resistors as a Case Study for Memristor Compact Modeling. IEEE Journal of the Electron Devices Society, 2022, 10, 466-473.	2.1	2
5	Hodgkin–Huxley equations implies Edge of Chaos Kernel. Japanese Journal of Applied Physics, 2022, 61, SM0805.	1.5	14
6	Experimental validation of state equations and dynamic route maps for phase change memristive devices. Scientific Reports, 2022, 12, 6488.	3.3	5
7	Empirical Characterization of ReRAM Devices Using Memory Maps and a Dynamic Route Map. Electronics (Switzerland), 2022, 11, 1672.	3.1	1
8	Allâ€Optically Controlled Memristor for Optoelectronic Neuromorphic Computing. Advanced Functional Materials, 2021, 31, 2005582.	14.9	123
9	Analog Self-Timed Programming Circuits for Aging Memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1133-1137.	3.0	13
10	A promising route to neuromorphic vision. National Science Review, 2021, 8, nwaa182.	9.5	1
11	Optoelectronic Neuromorphic Computing: Allâ€Optically Controlled Memristor for Optoelectronic Neuromorphic Computing (Adv. Funct. Mater. 4/2021). Advanced Functional Materials, 2021, 31, 2170027.	14.9	1
12	Implementation of Neuro-Memristive Synapse for Long-and Short-Term Bio-Synaptic Plasticity. Sensors, 2021, 21, 644.	3.8	9
13	Cyclic voltammetry of volatile memristors in the Venus flytrap: short-term memory. Functional Plant Biology, 2021, 48, 567.	2.1	6
14	Analog Neural Computing With Super-Resolution Memristor Crossbars. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4470-4481.	5.4	22
15	PMED-Net: Pyramid Based Multi-Scale Encoder-Decoder Network for Medical Image Segmentation. IEEE Access, 2021, 9, 55988-55998.	4.2	16
16	Verticalâ€organicâ€nanocrystalâ€arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. SmartMat, 2021, 2, 99-108.	10.7	73
17	On Local Activity and Edge of Chaos in a NaMLab Memristor. Frontiers in Neuroscience, 2021, 15, 651452.	2.8	63
18	On the Thermal Models for Resistive Random Access Memory Circuit Simulation. Nanomaterials, 2021, 11, 1261.	4.1	39

#	Article	IF	CITATIONS
19	Editorial Special Issue for 50th Birthday of Memristor Theory and Application of Neuromorphic Computing Based on Memristor—Part I. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4417-4418.	5.4	5
20	Editorial Special Issue for 50th Birthday of Memristor Theory and Application of Neuromorphic Computing Based on Memristor - Part II. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4835-4836.	5.4	1
21	How to Build a Memristive Integrate-and-Fire Model for Spiking Neuronal Signal Generation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4837-4850.	5.4	30
22	NbO ₂ -Mott Memristor: A Circuit- Theoretic Investigation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4979-4992.	5.4	27
23	Theoretical Foundations of Memristor Cellular Nonlinear Networks: Memcomputing With Bistable-Like Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 502-515.	5.4	49
24	Theoretical Foundations of Memristor Cellular Nonlinear Networks: Stability Analysis With Dynamic Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 1389-1401.	5.4	46
25	Hearts are Poised Near the Edge of Chaos. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030023.	1.7	9
26	Experimental evaluation of the dynamic route map in the reset transition of memristive ReRAMs. Chaos, Solitons and Fractals, 2020, 139, 110288.	5.1	20
27	Theoretical Foundations of Memristor Cellular Nonlinear Networks: A DRM ₂ -Based Method to Design Memcomputers With Dynamic Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2753-2766.	5.4	44
28	Global dynamics of Chua Corsage Memristor circuit family: fixed-point loci, Hopf bifurcation, and coexisting dynamic attractors. Nonlinear Dynamics, 2020, 99, 3169-3196.	5.2	22
29	Microtubules as Sub-Cellular Memristors. Scientific Reports, 2020, 10, 2108.	3.3	35
30	Reply to comment on â€If it's pinched it's a memristor'. Semiconductor Science and Technology, 201 098002.	19, 34, 2.0	3
31	Φ memristor: Real memristor found. Journal of Applied Physics, 2019, 125, 054504.	2.5	32
32	A Purely Digital Memristor Emulator based on a Flux-Charge Model. , 2018, , .		2
33	Taming Spatiotemporal Chaos in Forced Memristive Arrays. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2947-2954.	3.1	8
34	Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors. Science China Information Sciences, 2018, 61, 1.	4.3	14
35	Role of diversity in taming chaos in driven memristive arrays. , 2018, , .		0
36	A New Circuit for Emulating Memristors Using Inductive Coupling. IEEE Access, 2017, 5, 1284-1295.	4.2	43

#	Article	IF	CITATIONS
37	Chua Corsage Memristor: Phase Portraits, Basin of Attraction, and Coexisting Pinched Hysteresis Loops. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730011.	1.7	43
38	Third-Order Memristive Morris–Lecar Model of Barnacle Muscle Fiber. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730015.	1.7	18
39	Dynamics of Hamiltonian Systems and Memristor Circuits. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1730005.	1.7	15
40	Fractional memristor. Applied Physics Letters, 2017, 111, .	3.3	20
41	A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms. Sensors, 2017, 17, 16.	3.8	19
42	Hidden Bifurcations in the Multispiral Chua Attractor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630039.	1.7	24
43	History Erase Effect in a Non-Volatile Memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 389-400.	5.4	60
44	The First Ever Real Bistable Memristors—Part II: Design and Analysis of a Local Fading Memory System. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 1096-1100.	3.0	21
45	Design of a Low-Frequency Oscillator with PTC Memristor and an Inductor. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630021.	1.7	6
46	Turing Patterns in Memristive Cellular Nonlinear Networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1222-1230.	5.4	30
47	The First Ever Real Bistable Memristors—Part I: Theoretical Insights on Local Fading Memory. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 1091-1095.	3.0	25
48	Complexity Reduction: Local Activity Ranking by Resource Entropy for QoS-Aware Cloud Scheduling. , 2016, , .		1
49	Parasitic Effects on Memristor Dynamics. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630014.	1.7	21
50	Memristive Model of the Barnacle Giant Muscle Fibers. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1630001.	1.7	16
51	Memristor-based random access memory: The delayed switching effect could revolutionize memory design. , 2015, , .		0
52	Associative Learning with Temporal Contiguity in a Memristive Circuit for Largeâ€ s cale Neuromorphic Networks. Advanced Electronic Materials, 2015, 1, 1500125.	5.1	72
53	Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications. Frontiers in Neuroscience, 2015, 9, 409.	2.8	3
54	Dynamic Behavior of Coupled Memristor Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 1607-1616.	5.4	49

#	Article	IF	CITATIONS
55	A Theoretical Approach to Memristor Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, 5, 123-132.	3.6	92
56	Classification of mem-devices. , 2015, , .		3
57	What are Memristor, Memcapacitor, and Meminductor?. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62, 402-406.	3.0	47
58	Oscillator Made of Only One Memristor and One Battery. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530010.	1.7	27
59	A complete classification of memristor devices. , 2015, , .		1
60	Neuron Model with Simplified Memristive Ionic Channels. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1530017.	1.7	16
61	A Circuit-Based Learning Architecture for Multilayer Neural Networks With Memristor Bridge Synapses. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 215-223.	5.4	129
62	If it's pinched it's a memristor. Semiconductor Science and Technology, 2014, 29, 104001.	2.0	448
63	Transient Behaviors of Multiple Memristor Circuits Based on Flux Charge Relationship. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430006.	1.7	20
64	Fingerprints of a memristor. , 2014, , .		2
65	Memfractance: A Mathematical Paradigm for Circuit Elements with Memory. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430023.	1.7	90
66	Gas Discharge Lamps Are Volatile Memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 2066-2073.	5.4	34
67	Brains Are Made of Memristors. IEEE Circuits and Systems Magazine, 2014, 14, 12-36.	2.3	135
68	A Universal Mutator for Transformations Among Memristor, Memcapacitor, and Meminductor. IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, 61, 758-762.	3.0	66
69	Three Fingerprints of Memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 3008-3021.	5.4	473
70	Composite Behavior of Multiple Memristor Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2688-2700.	5.4	61
71	Memristor, Hodgkin–Huxley, and Edge of Chaos. Nanotechnology, 2013, 24, 383001.	2.6	182

#	Article	IF	CITATIONS
73	Neural Synaptic Weighting With a Pulse-Based Memristor Circuit. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 148-158.	5.4	307
74	Memristor Bridge Synapses. Proceedings of the IEEE, 2012, 100, 2061-2070.	21.3	229
75	HODGKIN–HUXLEY AXON IS MADE OF MEMRISTORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230011.	1.7	226
76	Memristor Emulator for Memristor Circuit Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59, 2422-2431.	5.4	326
77	Memristance drift avoidance with charge bouncing for memristor-based nonvolatile memories. Journal of the Korean Physical Society, 2012, 61, 1418-1421.	0.7	3
78	Memristor circuit for artificial synaptic weighting of pulse inputs. , 2012, , .		9
79	Two centuries of memristors. Nature Materials, 2012, 11, 478-481.	27.5	334
80	NEURONS ARE POISED NEAR THE EDGE OF CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250098.	1.7	121
81	Memristor bridge circuit for neural synaptic weighting. , 2012, , .		9
82	MEMRISTOR HAMILTONIAN CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 2395-2425.	1.7	46
83	Resistance switching memories are memristors. Applied Physics A: Materials Science and Processing, 2011, 102, 765-783.	2.3	1,170
84	ISQED quality award recipient (IQ-Award 2010). , 2010, , .		0
85	TOPOLOGICAL ANALYSIS OF CHAOTIC SOLUTION OF A THREE-ELEMENT MEMRISTIVE CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3819-3827.	1.7	14
86	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART XIV: MORE BERNOULLI στ-SHIFT RULES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 2253-2425.	1.7	5
87	Memristor-based multilevel memory. , 2010, , .		86
88	SIMPLEST CHAOTIC CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1567-1580.	1.7	432
89	Quasi global-equivalence in one-dimensional binary cellular automata. , 2009, , .		0
90	DIFFERENCE EQUATIONS FOR CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 805-830.	1.7	7

#	Article	IF	CITATIONS
91	Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors. Proceedings of the IEEE, 2009, 97, 1717-1724.	21.3	871
92	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE. PART X: PERIOD-1 RULES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 1425-1654.	1.7	6
93	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART XI: PERIOD-2 RULES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 1751-1930.	1.7	10
94	Awakening dynamics via passive coupling and synchronization mechanism in oscillatory cellular neural/nonlinear networks. International Journal of Circuit Theory and Applications, 2008, 36, 525-553.	2.0	13
95	MEMRISTOR OSCILLATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3183-3206.	1.7	846
96	APPLICATIONS OF LOCAL ACTIVITY THEORY OF CNN TO CONTROLLED COUPLED OREGONATOR SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3233-3297.	1.7	3
97	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART IX: QUASI-ERGODICITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 2487-2642.	1.7	19
98	ISLES OF EDEN AND THE ZUK THEOREM IN â" ^d . International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 2951-2963.	1.7	3
99	OSCILLATIONS ON THE EDGE OF CHAOS VIA DISSIPATION AND DIFFUSION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 1531-1573.	1.7	3
100	BOIDS CONTROL OF CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 427-444.	1.7	4
101	ADVANCED IMAGE PROCESSING CELLULAR NEURAL NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 1109-1150.	1.7	13
102	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART VIII: MORE ISLES OF EDEN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3741-3894.	1.7	26
103	Road Boundary Detection Based on the Dynamic Programming and the Randomized Hough Transform. , 2007, , .		6
104	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART VI: FROM TIME-REVERSIBLE ATTRACTORS TO THE ARROW OF TIME. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 1097-1373.	1.7	37
105	COMPLEXITY OF REACTION–DIFFUSION CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2499-2527.	1.7	15
106	NONLINEAR PATTERN CLASSIFICATION ASSOCIATED WITH CELLULAR NEURAL NETWORKS-BASED DYNAMIC PROGRAMMING. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 169-179.	1.7	0
107	IMAGE PROCESSING AND SELF-ORGANIZING CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2939-2958.	1.7	9
108	NONLINEAR OSCILLATORS WITH HYSTERETIC CHUA'S DIODES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1709-1735.	1.7	0

#	Article	IF	CITATIONS
109	LOCAL ACTIVITY IS THE ORIGIN OF COMPLEXITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 3435-3456.	1.7	210
110	A NONLINEAR DYNAMICS PERSPECTIVE OF WOLFRAM'S NEW KIND OF SCIENCE PART III: PREDICTING THE UNPREDICTABLE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 3689-3820.	1.7	54
111	TIME-DELAYED IMPULSIVE CONTROL OF CHAOTIC HYBRID SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 1091-1104.	1.7	17
112	STAR CELLULAR NEURAL NETWORKS FOR ASSOCIATIVE AND DYNAMIC MEMORIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 1725-1772.	1.7	56
113	A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science Part II: Universal Neuron. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 2377-2491.	1.7	36
114	RECONSTRUCTION AND SYNCHRONIZATION OF HYPERCHAOTIC CIRCUITS VIA ONE STATE VARIABLE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 2069-2085.	1.7	20
115	LOCAL ACTIVITY CRITERIA FOR DISCRETE-MAP CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2002, 12, 1227-1272.	1.7	9
116	Image Processing in Tunneling Phase Logic Cellular Nonlinear Networks. World Scientific Series on Nonlinear Science, Series B, 2002, , 577-591.	0.2	2
117	CONDITIONS FOR IMPULSIVE SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 551-560.	1.7	154
118	TESTING FOR LOCAL ACTIVITY AND EDGE OF CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 1495-1591.	1.7	16
119	SPHERICAL CELLULAR NONLINEAR NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2001, 11, 241-257.	1.7	2
120	PRACTICAL STABILITY OF IMPULSIVE SYNCHRONIZATION BETWEEN TWO NONAUTONOMOUS CHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 859-867.	1.7	19
121	EVALUATION OF A CONTINUOUS VALUED CHAOTIC SPREADER USED IN A CHAOTIC DIGITAL CODE-DIVISION MULTIPLE ACCESS ((CD)2MA) SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 1933-1950.	1.7	6
122	CNN: A PARADIGM FOR COMPLEXITY. World Scientific Series on Nonlinear Science, Series A, 1999, , 529-837.	0.0	20
123	Ω-CLOBALLY ATTRACTIVE EQUILIBRIUM POINTS OF THE CNN. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 671-693.	1.7	1
124	EXPERIMENTAL STUDY OF IMPULSIVE SYNCHRONIZATION OF CHAOTIC AND HYPERCHAOTIC CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 1393-1424.	1.7	47
125	HOPF BIFURCATIONS AND DEGENERACIES IN CHUA'S CIRCUIT — A PERSPECTIVE FROM A FREQUENCY DOMAIN APPROACH. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 295-303.	1.7	13
126	EMERGENCE OF UNICELLULAR ORGANISMS FROM A SIMPLE GENERALIZED CELLULAR AUTOMATA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 1219-1236.	1.7	8

#	Article	IF	CITATIONS
127	A unified framework for multilayer high order CNN. International Journal of Circuit Theory and Applications, 1998, 26, 567-592.	2.0	9
128	Controlling Spiral Waves in a Model of Two-Dimensional Arrays of Chua's Circuits. Physical Review Letters, 1998, 80, 1884-1887.	7.8	44
129	CNN Genes for One-Dimensional Cellular Automata: A Multi-Nested Piecewise-Linear Approach. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 1987-2001.	1.7	10
130	Error Performance of Chaotic Digital Code-Divison Multiple Access (CDMA) Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 2047-2059.	1.7	13
131	Edge of Chaos and Local Activity Domain of FitzHugh-Nagumo Equation. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1998, 08, 211-257.	1.7	92
132	Communication Systems via Chaotic Signals from a Reconstruction Viewpoint. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 275-286.	1.7	70
133	Impulsive Control and Synchronization of Nonlinear Dynamical Systems and Application to Secure Communication. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 645-664.	1.7	169
134	Chaotic Digital Code-Division Multiple Access (CDMA) Communication Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 2789-2805.	1.7	70
135	ANALOGUE COMBINATORICS AND CELLULAR AUTOMATA—KEY ALGORITHMS AND LAY-OUT DESIGN. International Journal of Circuit Theory and Applications, 1996, 24, 145-164.	2.0	12
136	SYNCHRONIZING NONAUTONOMOUS CHAOTIC SYSTEMS WITHOUT PHASE-LOCKING. Journal of Circuits, Systems and Computers, 1996, 06, 227-241.	1.5	7
137	EXACT SYNCHRONIZATION OF MISMATCHED CHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 569-580.	1.7	19
138	ADAPTIVE SYNCHRONIZATION OF CHUA'S OSCILLATORS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 189-201.	1.7	119
139	CLARIFYING CHAOS: EXAMPLES AND COUNTEREXAMPLES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 219-249.	1.7	140
140	FROM ALMOST PERIODIC TO CHAOTIC: THE FUNDAMENTAL MAP. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 1111-1125.	1.7	12
141	CHANNEL-INDEPENDENT CHAOTIC SECURE COMMUNICATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 2653-2660.	1.7	57
142	ON A VARIATION OF THE HUBERMAN-LUMER ADAPTIVE SCHEME. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 1397-1407.	1.7	0
143	ON THE GENERALITY OF THE UNFOLDED CHUA'S CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 801-832.	1.7	18
144	ON THE GENERATION OF SCROLL WAVES IN A THREE-DIMENSIONAL DISCRETE ACTIVE MEDIUM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1995, 05, 313-320.	1.7	4

#	Article	IF	CITATIONS
145	CHUA'S CIRCUIT: CHAOTIC PHENOMENA AND APPLICATIONS. , 1995, , 265-300.		0
146	EXPERIMENTAL STUDY OF FORCED CHUA'S OSCILLATOR. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 1721-1742.	1.7	17
147	EXPERIMENTAL CONTROL OF CHAOS IN CHUA'S CIRCUIT VIA TUNNELS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 741-750.	1.7	4
148	ARNOL'D TONGUES, DEVIL'S STAIRCASE, AND SELF-SIMILARITY IN THE DRIVEN CHUA'S CIRCUIT. Inter Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 1743-1753.	rnational 1.7	19
149	HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA'S CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 477-482.	1.7	182
150	Chua's circuit 10 years later. International Journal of Circuit Theory and Applications, 1994, 22, 279-305.	2.0	107
151	Stability analysis of generalized cellular neural networks. International Journal of Circuit Theory and Applications, 1993, 21, 1-33.	2.0	71
152	Multilevel and nonâ€ideal quantization in â~ δ modulation. International Journal of Circuit Theory and Applications, 1993, 21, 61-83.	2.0	5
153	Properties of admissible symbolic sequences in a secondâ€order digital filter with overflow nonâ€linearity. International Journal of Circuit Theory and Applications, 1993, 21, 299-307.	2.0	30
154	An IC diode for Chua's circuit. International Journal of Circuit Theory and Applications, 1993, 21, 309-316.	2.0	4
155	SPREAD SPECTRUM COMMUNICATION THROUGH MODULATION OF CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1993, 03, 469-477.	1.7	274
156	DERIVATIVES FOR THE STABLE AND UNSTABLE MANIFOLDS OF A Cr Diffeomorphism ofR2. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1993, 03, 1601-1605.	1.7	4
157	TRANSITIONS IN DYNAMICAL REGIMES BY DRIVING: A UNIFIED METHOD OF CONTROL AND SYNCHRONIZATION OF CHAOS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1993, 03, 479-483.	1.7	81
158	SPREAD SPECTRUM COMMUNICATION THROUGH MODULATION OF CHAOS IN CHUA'S CIRCUIT. World Scientific Series on Nonlinear Science, Series B, 1993, , 379-394.	0.2	5
159	ENIGMA OF THE DOUBLE-SCROLL CHUA'S ATTRACTOR. World Scientific Series on Nonlinear Science, Series B, 1993, , 754-765.	0.2	0
160	NONLINEAR DYNAMICS OF A CLASS OF ANALOG-TO-DIGITAL CONVERTERS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 02, 325-340.	1.7	48
161	CHAOS OR TURBULENCE?. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992, 02, 1005-1009.	1.7	4
162	Global properties of continuous piecewise linear vector fields. Part II: Simplest symmetric case in â" ² . International Journal of Circuit Theory and Applications, 1992, 20, 9-46.	2.0	25

#	Article	IF	CITATIONS
163	Cellular neural networks with nonâ€linear and delayâ€type template elements and nonâ€uniform grids. International Journal of Circuit Theory and Applications, 1992, 20, 469-481.	2.0	342
164	On the universe of stable cellular neural networks. International Journal of Circuit Theory and Applications, 1992, 20, 497-517.	2.0	102
165	Cellular neural networks: Theory and circuit design. International Journal of Circuit Theory and Applications, 1992, 20, 533-553.	2.0	75
166	Design of high-speed, high-density CNNS in cmos technology. International Journal of Circuit Theory and Applications, 1992, 20, 555-572.	2.0	25
167	A CNN handwritten character recognizer. International Journal of Circuit Theory and Applications, 1992, 20, 601-612.	2.0	19
168	Measuring volterra kernels III: How to estimate the highest significant order. International Journal of Circuit Theory and Applications, 1991, 19, 189-209.	2.0	34
169	Global properties of continuous piecewise linear vector fields. Part I: Simplest case in â" ² . International Journal of Circuit Theory and Applications, 1991, 19, 251-307.	2.0	52
170	Hysteresis in electronic circuits: A circuit theorist's perspective. International Journal of Circuit Theory and Applications, 1991, 19, 471-515.	2.0	54
171	HORSESHOES IN THE TWIST-AND-FLIP MAP. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1991, 01, 235-252.	1.7	5
172	Generating randomness from chaos and constructing chaos with desired randomness. International Journal of Circuit Theory and Applications, 1990, 18, 215-240.	2.0	33
173	Impasse points. Part II: Analytical aspects. International Journal of Circuit Theory and Applications, 1989, 17, 271-282.	2.0	54
174	Bifurcation analysis of a cuspâ€constrained piecewiseâ€linear circuit. International Journal of Circuit Theory and Applications, 1989, 17, 283-346.	2.0	7
175	Multimode oscillator analysis via integral manifolds part I: Non-resonant case. International Journal of Circuit Theory and Applications, 1988, 16, 25-58.	2.0	13
176	Multimode oscillator analysis via integral manifolds part II: Resonant case. International Journal of Circuit Theory and Applications, 1988, 16, 59-92.	2.0	8
177	Highâ€speed nonâ€linear circuit models for <i>pâ€n</i> junction diodes. International Journal of Circuit Theory and Applications, 1988, 16, 157-190.	2.0	19
178	The overdamped double-scroll family. Part I: Piecewise-linear geometry and normal form. International Journal of Circuit Theory and Applications, 1988, 16, 233-302.	2.0	16
179	Transfer maps and return maps for piecewiseâ€linear threeâ€region dynamical systems. International Journal of Circuit Theory and Applications, 1987, 15, 23-49.	2.0	17
180	A simple dynamic circuit model for mos structure. International Journal of Circuit Theory and Applications, 1987, 15, 143-170.	2.0	2

#	Article	IF	CITATIONS
181	Topological conditions for a resistive circuit containing negative nonâ€linear resistors to have a unique solution. International Journal of Circuit Theory and Applications, 1987, 15, 193-210.	2.0	4
182	Canonical piecewiseâ€linear analysis: Generalized breakpoint hopping algorithm. International Journal of Circuit Theory and Applications, 1986, 14, 35-52.	2.0	20
183	Efficient solution of the variational equation for piecewiseâ€linear differential equations. International Journal of Circuit Theory and Applications, 1986, 14, 305-314.	2.0	10
184	Non-linear op-amp circuits: Existence and uniqueness of solution by inspection. International Journal of Circuit Theory and Applications, 1984, 12, 145-173.	2.0	19
185	Negative resistance devices. International Journal of Circuit Theory and Applications, 1983, 11, 161-186.	2.0	64
186	High-order non-linear circuit elements: Circuit-theoretic properties. International Journal of Circuit Theory and Applications, 1983, 11, 187-206.	2.0	13
187	Hopf bifurcation via Volterra series. IEEE Transactions on Automatic Control, 1983, 28, 42-53.	5.7	13
188	Finding all solutions of piecewiseâ€linear circuits. International Journal of Circuit Theory and Applications, 1982, 10, 201-229.	2.0	93
189	Anomalies in nonlinear device models. , 1981, , .		0
190	Differential topology and nonlinear circuits. , 1981, , .		0
191	A unified theory of symmetry for nonlinear multiport and multiterminal resistors. International Journal of Circuit Theory and Applications, 1979, 7, 337-371.	2.0	5
192	Complete stability of autonomous reciprocal nonlinear networks. International Journal of Circuit Theory and Applications, 1978, 6, 211-241.	2.0	25
193	A new approach to overcome the overflow problem in computer-aided analysis of nonlinear resistive circuits. International Journal of Circuit Theory and Applications, 1975, 3, 261-284.	2.0	7
194	A memristive circuit model for p-n junction diodes. International Journal of Circuit Theory and Applications, 1974, 2, 367-389.	2.0	26