
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3186327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3, 297-302.	31.4	3,903
2	Bulk Heterojunction Solar Cells Using Thieno[3,4- <i>c</i>]pyrrole-4,6-dione and Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole Copolymer with a Power Conversion Efficiency of 7.3%. Journal of the American Chemical Society, 2011, 133, 4250-4253.	13.7	1,047
3	A Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 5330-5331.	13.7	747
4	Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chemical Reviews, 2016, 116, 14225-14274.	47.7	402
5	High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Advanced Energy Materials, 2011, 1, 491-494.	19.5	395
6	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	21.0	297
7	Light-Emitting Diodes from Fluorene-Based π-Conjugated Polymers. Chemistry of Materials, 2000, 12, 1931-1936.	6.7	252
8	Effects of the Molecular Weight and the Sideâ€Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers. Advanced Functional Materials, 2012, 22, 2345-2351.	14.9	223
9	Solarâ€Energy Production and Energyâ€Efficient Lighting: Photovoltaic Devices and Whiteâ€Lightâ€Emitting Diodes Using Poly(2,7â€fluorene), Poly(2,7â€carbazole), and Poly(2,7â€dibenzosilole) Derivatives. Advanced Materials, 2010, 22, E6-E27.	21.0	220
10	Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry, 2009, 19, 5351.	6.7	185
11	Polycarbazoles for plastic electronics. Polymer Chemistry, 2010, 1, 127-136.	3.9	172
12	PCDTBT: en route for low cost plastic solar cells. Journal of Materials Chemistry A, 2013, 1, 11097.	10.3	171
13	Synthesis and Characterization of New Thieno[3,4â€ɛ]pyrroleâ€4,6â€dione Derivatives for Photovoltaic Applications. Advanced Functional Materials, 2011, 21, 718-728.	14.9	170
14	A Thermally Stable Semiconducting Polymer. Advanced Materials, 2010, 22, 1253-1257.	21.0	165
15	Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chemistry of Materials, 2009, 21, 1504-1513.	6.7	158
16	Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives:Â Precursors of Light-Emitting Polymers. Journal of Physical Chemistry B, 2000, 104, 9118-9125.	2.6	151
17	Toward the Development of New Textile/Plastic Electrochromic Cells Using Triphenylamine-Based Copolymers. Chemistry of Materials, 2006, 18, 4011-4018.	6.7	143
18	Highly-efficient charge separation and polaron delocalization in polymer–fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study. Physical Chemistry Chemical Physics, 2013, 15, 9562.	2.8	135

#	ARTICLE Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and	IF	CITATIONS
19	in bulk heterojunction composites with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>PC</mml:mtext></mml:mrow><mml:mrow< td=""><td>3.2 > < mml:mi</td><td>117 n>70</td></mml:mrow<></mml:mrow></mml:mrow></mml:math 	3.2 > < mml:mi	117 n>70
20	Molecular Design and Characterization of Chromic Polyfluorene Derivatives. Macromolecules, 2000, 33, 5874-5879.	4.8	109
21	Highly efficient polycarbazole-based organic photovoltaic devices. Applied Physics Letters, 2009, 95, 063304.	3.3	107
22	Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells. Organic Electronics, 2012, 13, 1736-1741.	2.6	103
23	Blue light-emitting devices from new conjugated poly(N-substituted-2,7-carbazole) derivatives. Applied Physics Letters, 2002, 80, 341-343.	3.3	89
24	High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability. Solar Energy Materials and Solar Cells, 2012, 96, 155-159.	6.2	89
25	Increasing Polymer Solar Cell Fill Factor by Trapâ€Filling with F4â€TCNQ at Parts Per Thousand Concentration. Advanced Materials, 2016, 28, 6491-6496.	21.0	85
26	Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Organic Electronics, 2011, 12, 1788-1793.	2.6	82
27	Thieno-, Furo-, and Selenopheno[3,4- <i>c</i>]pyrrole-4,6-dione Copolymers: Effect of the Heteroatom on the Electrooptical Properties. Macromolecules, 2012, 45, 6906-6914.	4.8	79
28	Impact of UVâ€Visible Light on the Morphological and Photochemical Behavior of a Lowâ€Bandgap Poly(2,7â€Carbazole) Derivative for Use in Highâ€Performance Solar Cells. Advanced Energy Materials, 2013, 3, 478-487.	19.5	75
29	Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chemical Science, 2017, 8, 3913-3925.	7.4	70
30	Work Function Control of Interfacial Buffer Layers for Efficient and Airâ€Stable Inverted Lowâ€Bandgap Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 361-368.	19.5	56
31	New Fluorinated Dithienyldiketopyrrolopyrrole Monomers and Polymers for Organic Electronics. Macromolecules, 2017, 50, 7080-7090.	4.8	50
32	Spectroscopic and Photophysical Properties of Thiopheneâ^'Fluorene Oligomers as well as Their Corresponding Polyesters. Macromolecules, 2001, 34, 2288-2297.	4.8	48
33	Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions. Journal of Physical Chemistry B, 2015, 119, 7407-7416.	2.6	48
34	Direct heteroarylation of Î ² -protected dithienosilole and dithienogermole monomers with thieno[3,4-c]pyrrole-4,6-dione and furo[3,4-c]pyrrole-4,6-dione. Polymer Chemistry, 2013, 4, 5252.	3.9	47
35	Conformational, optical and photophysical properties of a substituted terfluorene isolated and incorporated in a polyester. Chemical Physics Letters, 2000, 316, 101-107.	2.6	45
36	Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers. Chemical Science, 2012, 3, 2270.	7.4	44

#	Article	IF	CITATIONS
37	Synthesis and characterization of a novel polyester derived from substituted terfluorene. Macromolecular Rapid Communications, 2000, 21, 1013-1018.	3.9	42
38	Highly efficient thieno[3,4-c]pyrrole-4,6-dione-based solar cells processed from non-chlorinated solvent. Organic Electronics, 2014, 15, 543-548.	2.6	40
39	How Photoinduced Crosslinking Under Operating Conditions Can Reduce PCDTBTâ€Based Solar Cell Efficiency and then Stabilize It. Advanced Energy Materials, 2014, 4, 1301530.	19.5	39
40	Is there a photostable conjugated polymer for efficient solar cells?. Polymer Degradation and Stability, 2015, 112, 175-184.	5.8	38
41	Optical and Electrical Properties of π-Conjugated Polymers Based on Electron-Rich 3,6-Dimethoxy-9,9-dihexylfluorene Unit. Macromolecules, 2003, 36, 8986-8991.	4.8	34
42	Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polymer Journal, 2020, 52, 13-20.	2.7	34
43	Rational Design of Poly(2,7â€Carbazole) Derivatives for Photovoltaic Applications. Macromolecular Theory and Simulations, 2011, 20, 13-18.	1.4	31
44	Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends. Advanced Energy Materials, 2014, 4, 1301517.	19.5	30
45	A Study of the Degree of Fluorination in Regioregular Poly(3-hexylthiophene). Macromolecules, 2017, 50, 162-174.	4.8	30
46	Intensity Dependent Femtosecond Dynamics in a PBDTTPD-Based Solar Cell Material. Journal of Physical Chemistry Letters, 2012, 3, 2952-2958.	4.6	28
47	Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene and Fluorinated Dithieno-2,1,3-benzothiadiazole by Direct Heteroarylation. Macromolecules, 2017, 50, 4658-4667.	4.8	28
48	Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 8687-8698.	8.0	26
49	Donor–acceptor alternating copolymers containing thienopyrroledione electron accepting units: preparation, redox behaviour, and application to photovoltaic cells. Polymer Chemistry, 2012, 3, 2355.	3.9	24
50	Random D–A1–D–A2terpolymers based on benzodithiophene, thiadiazole[3,4-e]isoindole-5,7-dione and thieno[3,4-c]pyrrole-4,6-dione for efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 6638-6647.	10.3	21
51	Thieno, Furo, and Selenopheno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione Copolymers: Airâ€Processed Polymer Solar Cells with Power Conversion Efficiency up to 7.1%. Advanced Energy Materials, 2015, 5, 1501213.	19.5	20
52	Electronic spectroscopy and photophysics of phenylene–fluorene derivatives as well as their corresponding polyesters. Synthetic Metals, 2002, 126, 43-51.	3.9	19
53	Slow geminateâ€chargeâ€pair recombination dynamics at polymer: Fullerene heterojunctions in efficient organic solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1395-1404.	2.1	12
54	High open-circuit voltage solar cells using a new thieno[3,4-c] pyrrole-4,6-dione based copolymer. Synthetic Metals, 2013, 182, 9-12.	3.9	9

#	Article	IF	CITATIONS
55	Solution Processed Organic Tandem Solar Cells. Energy Procedia, 2012, 31, 159-166.	1.8	7
56	Photovoltaic device performance of highly regioregular fluorinated poly(3-hexylthiophene). Organic Electronics, 2017, 50, 115-120.	2.6	7
57	Theoretical Calculations for Highly Selective Direct Heteroarylation Polymerization: New Nitrile-Substituted Dithienyl-Diketopyrrolopyrrole-Based Polymers. Molecules, 2018, 23, 2324.	3.8	7
58	2008 Macromolecular Science and Engineering Division Award Lecture — Conjugated polymers: From micro-electronics to genomics. Canadian Journal of Chemistry, 2009, 87, 1201-1208.	1.1	6
59	Design, Synthesis and Charaterization of Polymers Derived from Fluorene for Application in RGB Polymer Light-Emitting-Diodes. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	2
60	Charge Transfer: Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends (Adv.) Tj ETQqO (0 0 rgBT /0 19.5	Overlock 10 Tf

61 Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. , 0, .