Yu Kawano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/31854/publications.pdf

Version: 2024-02-01

623734 752698 95 704 14 20 citations h-index g-index papers 95 95 95 411 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Partial Exponential Stability Analysis of Slow–Fast Systems via Periodic Averaging. IEEE Transactions on Automatic Control, 2022, 67, 5479-5486.	5 . 7	3
2	Path-Based Stability Analysis for Monotone Control Systems on Proper Cones. IEEE Transactions on Automatic Control, 2022, 67, 5517-5524.	5.7	1
3	Gaussian distribution of average photon energy and spectral gain and loss of several-type photovoltaic modules at different outdoor sites around the world. Optics Communications, 2022, 505, 127516.	2.1	4
4	Controller Reduction for Nonlinear Systems by Generalized Differential Balancing. IEEE Transactions on Automatic Control, 2022, 67, 5856-5871.	5.7	6
5	Mg Content Impact of a Sputtered Zn _{1â€"<i>x</i>} Mg _{<i>x</i>} O:Al Transparent Electrode on Photovoltaic Performances of Flexible, Cd-Free, and All-Dry-Process Cu(In,Ga)(S,Se) ₂ Solar Cells. ACS Applied Energy Materials, 2022, 5, 2270-2278.	5.1	5
6	Formation of Native In _{<i>x</i>} (O,S) _{<i>y</i>} Buffer through Surface Oxidation of Cu(In,Ga)(S,Se) ₂ Absorber for Significantly Enhanced Conversion Efficiency of Flexible and Cdâ€Free Solar Cell by Allâ€Dry Process. Solar Rrl, 2022, 6, .	5.8	6
7	Derived Conduction Band Offset by Photoelectron Yield Spectroscopy and Its Quantitative Number for Efficiency Enhancement of Flexible, Cd-Free, and All-Dry Process Zn _{1â€"<i>x</i>} Mg _{<i>x</i>} Cal/Zn _{1â€"<i>x</i>} Cal/Zn _{1â€"<i>x</i>} Cal/Zn _{1â€"<i>x</i>} Cal/Zn _{1â€"<i>x</i>} Cal/Zn _{1â€"<i>x</i>} Cal/Zn _{Cal/Zn_{1a}Cal/Zn_{Cal/Zn}}}	O/Ću³ln,Ga	a)(\$,Se)
8	Asynchronous and Time-Varying Proximal Type Dynamics in Multiagent Network Games. IEEE Transactions on Automatic Control, 2021, 66, 2861-2867.	5.7	13
9	Accessibility and System Reduction of Nonlinear Time-Delay Control Systems. IEEE Transactions on Automatic Control, 2021, 66, 3781-3788.	5.7	9
10	Partial Phase Cohesiveness in Networks of Networks of Kuramoto Oscillators. IEEE Transactions on Automatic Control, 2021, 66, 6100-6107.	5 . 7	12
11	Device design for high-performance bifacial Cu(In,Ga)Se2 solar cells under front and rear illuminations. Solar Energy, 2021, 218, 76-84.	6.1	13
12	Empirical differential Gramians for nonlinear model reduction. Automatica, 2021, 127, 109534.	5.0	4
13	Modular control under privacy protection: Fundamental trade-offs. Automatica, 2021, 127, 109518.	5.0	10
14	Peeling Technique by Two-Dimensional MoSe2 Atomic Layer for Bifacial-Flexible Cu(In, Ga)Se2 solar cells., 2021,,.		0
15	Privacy protection with heavy-tailed noise for linear dynamical systems. Automatica, 2021, 131, 109732.	5.0	О
16	Effect of an Ohmic back contact on the stability of Cu(In,Ga)Se2-based flexible bifacial solar cells. Applied Physics Letters, 2021, 119, .	3.3	4
17	Krasovskii and Shifted Passivity-Based Control. IEEE Transactions on Automatic Control, 2021, 66, 4926-4932.	5.7	20
18	Scalable Control Design for K-positive Linear Systems. IFAC-PapersOnLine, 2021, 54, 84-89.	0.9	0

#	Article	IF	CITATIONS
19	Silver-alloyed wide-gap CuGaSe2 solar cells. Solar Energy, 2021, 230, 509-514.	6.1	7
20	Effects of Quantization and Dithering in Privacy Analysis for a Networked Control System., 2021, , .		1
21	Contraction Analysis of Monotone Systems via Separable Functions. IEEE Transactions on Automatic Control, 2020, 65, 3486-3501.	5.7	17
22	22%â€efficient Cdâ€free Cu(In,Ga)(S,Se) ₂ solar cell by allâ€dry process using Zn _{0.8} Mg _{0.1} O:B as buffer and transparent conductive oxide layers. Progress in Photovoltaics: Research and Applications, 2020, 28, 79-89.	8.1	17
23	Design of Intermittent Control for Cortisol Secretion Under Time-Varying Demand and Holding Cost Constraints. IEEE Transactions on Biomedical Engineering, 2020, 67, 556-564.	4.2	3
24	Data-Driven Model Reduction of Monotone Systems by Nonlinear DC Gains. IEEE Transactions on Automatic Control, 2020, 65, 2094-2106.	5.7	10
25	Neural Network-Based Adaptive Control for Spacecraft Under Actuator Failures and Input Saturations. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 3696-3710.	11.3	33
26	Realizations in feedforward forms of nonlinear inputâ€output equations with timeâ€delays. International Journal of Robust and Nonlinear Control, 2020, 30, 7560-7573.	3.7	0
27	Converse stability theorems for positive linear time-varying systems. Automatica, 2020, 122, 109193.	5.0	4
28	Application of Two-Dimensional MoSe2 Atomic Layers to the Lift-Off Process for Producing Light-Weight and Flexible Bifacial Cu(In, Ga)Se2 Solar Cells. ACS Applied Energy Materials, 2020, 3, 9504-9508.	5.1	17
29	Interfacial modification mechanism by aging effect for high-performance Cd-free and all-dry process Cu(In,Ga)(S,Se)2 solar cells. Applied Physics Letters, 2020, 117, .	3.3	8
30	Design of Privacy-Preserving Dynamic Controllers. IEEE Transactions on Automatic Control, 2020, 65, 3863-3878.	5.7	24
31	Transparent Electrode and Buffer Layer Combination for Reducing Carrier Recombination and Optical Loss Realizing over a 22%-Efficient Cd-Free Alkaline-Treated Cu(In,Ga)(S,Se)2 Solar Cell by the All-Dry Process. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22298-22307.	8.0	17
32	A Fundamental Performance Limit of Cloud-based Control in Terms of Differential Privacy Level. IFAC-PapersOnLine, 2020, 53, 11018-11023.	0.9	1
33	Resolving Discrepancies in Problem Formulations for Electricity Pricing by Control Engineers and Economists., 2020,, 59-78.		0
34	Real-Time Pricing for Electric Power Systems by Nonlinear Model Predictive Control., 2020,, 245-277.		0
35	Model Reduction of Multiagent Systems Using Dissimilarity-Based Clustering. IEEE Transactions on Automatic Control, 2019, 64, 1663-1670.	5.7	15
36	Examination of Relationship between Urbach Energy and Open-Circuit Voltage Deficit of Flexible Cu(In,Ga)Se2 Solar Cell for Its Improved Photovoltaic Performance. ACS Applied Energy Materials, 2019, 2, 7843-7849.	5.1	22

#	Article	IF	CITATIONS
37	Aging Effect of a Cu(In,Ga)(S,Se) 2 Absorber on the Photovoltaic Performance of Its Cdâ€Free Solar Cell Fabricated by an Allâ€Dry Process: Its Carrier Recombination Analysis. Advanced Energy Materials, 2019, 9, 1902869.	19.5	26
38	Adaptive Failure-Tolerant Control for Spacecraft Attitude Tracking. IFAC-PapersOnLine, 2019, 52, 67-72.	0.9	2
39	Application of Al-Doped (Zn, Mg)O on pure-sulfide Cu(In, Ga)S2 solar cells for enhancement of open-circuit voltage. Solar Energy Materials and Solar Cells, 2019, 202, 110157.	6.2	19
40	Characteristics of Zn1â^'xMgxO:B and its application as transparent conductive oxide layer in Cu(In,Ga)(S,Se)2 solar cells with and without CdS buffer layer. Solar Energy, 2019, 184, 553-560.	6.1	24
41	Structural Accessibility and Its Applications to Complex Networks Governed by Nonlinear Balance Equations. IEEE Transactions on Automatic Control, 2019, 64, 4607-4614.	5.7	5
42	Robust Passivity-Based Control of Boost Converters in DC Microgrids ^{â<†} ., 2019, , .		25
43	Krasovskii's Passivity. IFAC-PapersOnLine, 2019, 52, 466-471.	0.9	9
44	Balanced Model Reduction for Linear Time-Varying Symmetric Systems. IEEE Transactions on Automatic Control, 2019, 64, 3060-3067.	5.7	4
45	Evolutionary Dynamics of Two Communities Under Environmental Feedback. , 2019, 3, 254-259.		16
46	Structure Preserving Truncation of Nonlinear Port Hamiltonian Systems. IEEE Transactions on Automatic Control, 2018, 63, 4286-4293.	5.7	6
47	Revisit Input Observability: A New Approach to Attack Detection and Privacy Preservation., 2018,,.		4
48	Partial Phase Cohesiveness in Networks of Communitinized Kuramoto Oscillators., 2018,,.		9
49	Stability of Remote Synchronization in Star Networks of Kuramoto Oscillators. , 2018, , .		8
50	Algebraic Approach to Nonlinear Optimal Control Problems with Terminal Constraints: Sufficient Conditions for Existence of Algebraic Solutions. SICE Journal of Control Measurement and System Integration, 2018, 11, 198-206.	0.7	3
51	Towards Time-Varying Proximal Dynamics in Multi-Agent Network Games. , 2018, , .		2
52	Differential Privacy and Qualitative Privacy Analysis for Nonlinear Dynamical Systems. IFAC-PapersOnLine, 2018, 51, 52-57.	0.9	3
53	Observability Conditions by Polynomial Ideals. Asian Journal of Control, 2017, 19, 821-831.	3.0	6
54	Reduction of Second-Order Network Systems With Structure Preservation. IEEE Transactions on Automatic Control, 2017, 62, 5026-5038.	5.7	38

#	Article	IF	CITATIONS
55	Nonlinear Eigenvalue Approach to Differential Riccati Equations for Contraction Analysis. IEEE Transactions on Automatic Control, 2017, 62, 6497-6504.	5.7	14
56	PBH tests for nonlinear systems. Automatica, 2017, 80, 135-142.	5.0	13
57	Model Reduction by Differential Balancing Based on Nonlinear Hankel Operators. IEEE Transactions on Automatic Control, 2017, 62, 3293-3308.	5.7	18
58	Empirical Differential Balancing for Nonlinear Systems. IFAC-PapersOnLine, 2017, 50, 6326-6331.	0.9	6
59	Algebraic approach to nonlinear finite-horizon optimal control problems with terminal constraints. , 2017, , .		2
60	Structural observability and sensor node selection for complex networks governed by nonlinear balance equations, , 2017 , , .		2
61	Algebraic approach to nonlinear finite-horizon optimal control problems of discrete-time systems with terminal constraints. , 2017, , .		2
62	Real-time Pricing with Consumers Estimation by a Particle Filter. Transactions of the Society of Instrument and Control Engineers, 2017, 53, 463-472.	0.2	2
63	Graph structure-preserving model reduction of linear network systems. , 2016, , .		18
64	On differential input-to-state stability. , 2016, , .		0
65	Model reduction of second-order network systems using graph clustering. , 2016, , .		7
66	Generalized Differential Balancing for Variationally Symmetric Systems. IFAC-PapersOnLine, 2016, 49, 844-849.	0.9	1
67	Algebraic geometric approach to output dead-beat controllability of discrete-time polynomial systems. Nonlinear Theory and Its Applications IEICE, 2016, 7, 460-467.	0.6	0
68	Single-experiment observability decomposition of discrete-time analytic systems. Systems and Control Letters, 2016, 97, 193-199.	2.3	2
69	Real-time price optimization for load frequency control in electric power systems with wind farms. , 2016, , .		1
70	Any dynamical system is fully accessible through one single actuator and related problems. International Journal of Robust and Nonlinear Control, 2016, 26, 1748-1754.	3.7	1
71	Commutative algebraic methods for controllability of discrete-time polynomial systems. International Journal of Control, 2016, 89, 343-351.	1.9	9
72	Load frequency control by integrating real-time price presentations for consumers and direct commands issued to generators and batteries. , $2016, , .$		3

#	Article	IF	Citations
73	On integrability of observable space for discrete-time analytic systems. , 2015, , .		1
74	Sufficient condition for minimal realization of incrementally stable nonlinear systems based on differential energy functions. , $2015, , .$		2
75	On differential balancing: Energy functions and balanced realization. , 2015, , .		4
76	On Integrability of Observable Space for Discrete-Time Polynomial Control Systems. IEEE Transactions on Automatic Control, 2015, 60, 1987-1991.	5.7	4
77	Stability criteria with nonlinear eigenvalues for diagonalizable nonlinear systems. Systems and Control Letters, 2015, 86, 41-47.	2.3	7
78	Model Reduction by Generalized Differential Balancing. Lecture Notes in Control and Information Sciences, 2015, , 349-362.	1.0	4
79	Sufficient Condition for Global Observability Decomposition of Polynomial Systems. SICE Journal of Control Measurement and System Integration, 2015, 8, 228-233.	0.7	0
80	Polynomial accessibility condition for the multi-input multi-output nonlinear control system. Proceedings of the Estonian Academy of Sciences, 2014, 63, 136.	1.5	3
81	Realization of a nonlinear system in the feedforward form: a polynomial approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 9480-9485.	0.4	2
82	Simple Sufficient Conditions for Reachability of Discrete-Time Polynomial Systems. IEEE Transactions on Automatic Control, 2013, 58, 3203-3206.	5.7	6
83	Observability at an initial state for polynomial systems. Automatica, 2013, 49, 1126-1136.	5.0	20
84	Observability Analysis of Nonlinear Systems Using Pseudo-Linear Transformation. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 606-611.	0.4	8
85	Algebraic Properties of Transfer Function Matrices for Meromorphic Nonlinear Time-Varying Systems. Transactions of the Institute of Systems Control and Information Engineers, 2013, 26, 185-192.	0.1	O
86	Algebraic Solutions to the Hamilton-Jacobi Equation with the Time-Varying Hamiltonian. SICE Journal of Control Measurement and System Integration, 2013, 6, 28-37.	0.7	3
87	Sufficiency of a necessary condition for local observability of discrete-time polynomial systems., 2013,,.		6
88	Necessary condition for local observability of discrete-time polynomial systems. , 2012, , .		3
89	Input-Output Linearization for Transfer Functions of Input-Affine Meromorphic Systems. SICE Journal of Control Measurement and System Integration, 2012, 5, 133-138.	0.7	2
90	An algebraic solution method for the unsteady Hamilton-Jacobi equation. , $2011, , .$		0

Yu Kawano

#	Article	IF	CITATIONS
91	An Algebraic Approach to Local Observability at an Initial State for Discrete-Time Polynomial Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 6449-6453.	0.4	1
92	Global Observability of Discrete-Time Polynomial Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 203-207.	0.4	5
93	Global Observability of Input-affine Polynomial Systems. Transactions of the Society of Instrument and Control Engineers, 2010, 46, 353-355.	0.2	0
94	Tunableâ€Conductionâ€Band Inâ^'Znâ^'Oâ€based Transparent Conductive Oxide Deposited at Room Temperature Physica Status Solidi (A) Applications and Materials Science, 0, , .	2.1.8	1
95	Position Influence of Sputtered Zn _{1â€"<i>x</i>} Mg <i>_x</i> O/Zn _{1â€"<i>x</i>} Mg <i>_x</i> O:Al Layers in Flexible and Cd-Free Cu(In,Ga)(S,Se) ₂ Solar Cells. ACS Applied Materials & Solar Cells. ACS ACS Applied Materials & Solar Cells. ACS ACS Applied Materials	8.0	1