Osmar Malaspina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3185356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A food-ingested sublethal concentration of thiamethoxam has harmful effects on the stingless bee Melipona scutellaris. Chemosphere, 2022, 288, 132461.	8.2	4
2	Method for maintaining adult solitary bee <i>Centris analis</i> under laboratory conditions. Methods in Ecology and Evolution, 2022, 13, 619-624.	5.2	3
3	Optimization of in vitro culture of honeybee nervous tissue for pesticide risk assessment. Toxicology in Vitro, 2022, 84, 105437.	2.4	1
4	Monitoring the effects of field exposure of acetamiprid to honey bee colonies in Eucalyptus monoculture plantations. Science of the Total Environment, 2022, 844, 157030.	8.0	0
5	Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam. Environmental Pollution, 2021, 268, 115770.	7.5	18
6	Electrochemical Sensor Based on Beeswax and Carbon Black Thin Biofilms for Determination of Paraquat in Apis mellifera Honey. Food Analytical Methods, 2021, 14, 606-615.	2.6	18
7	The functional activity of the miR-1914-5p in lipid metabolism of the hepatocarcinoma cell line HepG2: a potential molecular tool for controlling hepatic cellular migration. Molecular Biology Reports, 2021, 48, 3463-3474.	2.3	1
8	Effects of larval exposure to the fungicide pyraclostrobin on the post-embryonic development of Africanized Apis mellifera workers. Environmental Advances, 2021, 4, 100069.	4.8	2
9	Use of beeswax as an alternative binder in the development of composite electrodes: an approach for determination of hydrogen peroxide in honey samples. Electrochimica Acta, 2021, 390, 138876.	5.2	3
10	Enzymatic responses in the head and midgut of Africanized Apis mellifera contaminated with a sublethal concentration of thiamethoxam. Ecotoxicology and Environmental Safety, 2021, 223, 112581.	6.0	12
11	Propolis green biofilm for the immobilization of carbon nanotubes and metallic ions: Development of redox catalysts. Journal of Electroanalytical Chemistry, 2021, 900, 115747.	3.8	1
12	Thiamethoxam exposure deregulates short ORF gene expression in the honey bee and compromises immune response to bacteria. Scientific Reports, 2021, 11, 1489.	3.3	13
13	The modulatory effect of triclosan on the reversion of the activated phenotype of LXâ $\in 2$ hepatic stellate cells. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22413.	3.0	3
14	In Situ Metabolomics of the Honeybee Brain: The Metabolism of l-Arginine through the Polyamine Pathway in the Proboscis Extension Response (PER). Journal of Proteome Research, 2020, 19, 832-844.	3.7	17
15	Standardization of in vitro nervous tissue culture for honeybee: A high specificity toxicological approach. Ecotoxicology and Environmental Safety, 2020, 189, 110040.	6.0	5
16	Fungicide pyraclostrobin affects midgut morphophysiology and reduces survival of Brazilian native stingless bee Melipona scutellaris. Ecotoxicology and Environmental Safety, 2020, 206, 111395.	6.0	22
17	Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environmental Pollution, 2020, 266, 115267.	7.5	13
18	What is the most suitable native bee species from the Neotropical region to be proposed as model-organism for toxicity tests during the larval phase?. Environmental Pollution, 2020, 265, 114849.	7.5	16

#	Article	IF	CITATIONS
19	Using a toxicoproteomic approach to investigate the effects of thiamethoxam into the brain of Apis mellifera. Chemosphere, 2020, 258, 127362.	8.2	7
20	A high quality method for hemolymph collection from honeybee larvae. PLoS ONE, 2020, 15, e0234637.	2.5	5
21	Cellular and molecular effects of silymarin on the transdifferentiation processes of LX-2 cells and its connection with lipid metabolism. Molecular and Cellular Biochemistry, 2020, 468, 129-142.	3.1	6
22	Occurrence of virus, microsporidia, and pesticide residues in three species of stingless bees (Apidae:) Tj ETQq0 0	0 rgBT /O 1.6	verlock 10 Tf 27
23	Is the Water Supply a Key Factor in Stingless Bees' Intoxication?. Journal of Insect Science, 2020, 20, .	1.5	2
24	Nanopesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. Chemosphere, 2019, 236, 124282.	8.2	38
25	Semi-quantitative analysis of morphological changes in bee tissues: A toxicological approach. Chemosphere, 2019, 236, 124255.	8.2	15
26	In vitro larval rearing protocol for the stingless bee species Melipona scutellaris for toxicological studies. PLoS ONE, 2019, 14, e0213109.	2.5	20
27	Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Scientific Reports, 2019, 9, 3277.	3.3	35
28	Acute thiamethoxam toxicity in honeybees is not enhanced by common fungicide and herbicide and lacks stress-induced changes in mRNA splicing. Scientific Reports, 2019, 9, 19196.	3.3	14
29	Pesticide Exposure Assessment Paradigm for Stingless Bees. Environmental Entomology, 2019, 48, 36-48.	1.4	53
30	MALDIâ€imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. Pest Management Science, 2019, 75, 607-615.	3.4	22
31	Exposure to thiamethoxam during the larval phase affects synapsin levels in the brain of the honey bee. Ecotoxicology and Environmental Safety, 2019, 169, 523-528.	6.0	40
32	Exposure to a sublethal concentration of imidacloprid and the side effects on target and nontarget organs of Apis mellifera (Hymenoptera, Apidae). Ecotoxicology, 2018, 27, 109-121.	2.4	60
33	MALDI Imaging Analysis of Neuropeptides in Africanized Honeybee (<i>Apis mellifera</i>) Brain: Effect of Aggressiveness. Journal of Proteome Research, 2018, 17, 2358-2369.	3.7	24
34	Biological Data of Stingless Bees with Potential Application in Pesticide Risk Assessments. Sociobiology, 2018, 65, 777.	0.5	15
35	Profiling the proteomics in honeybee worker brains submitted to the proboscis extension reflex. Journal of Proteomics, 2017, 151, 131-144.	2.4	7
36	Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages. Environmental Pollution, 2017, 229, 386-393.	7.5	59

Osmar Malaspina

#	Article	IF	CITATIONS
37	Biochemical response of the Africanized honeybee exposed to fipronil. Environmental Toxicology and Chemistry, 2017, 36, 1652-1660.	4.3	22
38	Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere, 2017, 185, 56-66.	8.2	39
39	Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD?. Pesquisa Agropecuaria Brasileira, 2016, 51, 422-442.	0.9	46
40	Variation in honey yield per hive of Africanized bees depending on the introducing time of young queens. Ciencia Rural, 2016, 46, 895-900.	0.5	6
41	Comparative physiology of Malpighian tubules: form and function. Open Access Insect Physiology, 2016, , 13.	0.8	12
42	Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genetics and Molecular Biology, 2016, 39, 257-269.	1.3	20
43	Sublethal doses of fipronil intensify synapsin immunostaining in <i>Atta sexdens rubropilosa</i> (Hymenoptera: Formicidae) brains. Pest Management Science, 2016, 72, 907-912.	3.4	4
44	Liver alterations in <i>Oreochromis niloticus</i> (Pisces) induced by insecticide imidacloprid: Histopathology and heat shock protein <i>in situ</i> localization. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51, 881-887.	1.5	30
45	Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees. Chemosphere, 2016, 147, 328-336.	8.2	34
46	Evaluation of the genotoxicity/mutagenicity and antigenotoxicity/antimutagenicity induced by propolis and Baccharis dracunculifolia , by in vitro study with HTC cells. Toxicology in Vitro, 2016, 33, 9-15.	2.4	25
47	Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology, 2016, 62, .	0.5	39
48	Brazilian Propolis Production by Africanized Bees(Apis mellifera). Bee World, 2015, 92, 58-68.	0.8	2
49	Toxicity of Imidacloprid to the Stingless Bee Scaptotrigona postica Latreille, 1807 (Hymenoptera:) Tj ETQq1 1 0.	784314 rg 2.7	$BT_{34}^{Overlock}$
50	Impact of fipronil on the mushroom bodies of the stingless bee <i>Scaptotrigona postica</i> . Pest Management Science, 2015, 71, 114-122.	3.4	33
51	In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera:) Tj ETQq1 1 0.	784314 rg 8.2	BT_/Qverlock
52	Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid. Chemosphere, 2015, 120, 438-442.	8.2	37
53	Genotoxic Potential of the Insecticide Imidacloprid in a Non-Target Organism (<i>Oreochromis niloticus</i> -Pisces). Journal of Environmental Protection, 2015, 06, 1360-1367.	0.7	21
54	Cytotoxic effects of thiamethoxam in the midgut and malpighian tubules of Africanized <i>Apis mellifera</i> (Hymenoptera: Apidae). Microscopy Research and Technique, 2014, 77, 274-281.	2.2	94

OSMAR MALASPINA

#	Article	IF	CITATIONS
55	Sideâ€effects of thiamethoxam on the brain andmidgut of the africanized honeybee <i>Apis mellifera</i> (Hymenopptera: Apidae). Environmental Toxicology, 2014, 29, 1122-1133.	4.0	98
56	Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a subâ€lethal doses of the insecticide fipronil. Ecotoxicology, 2014, 23, 1659-1670.	2.4	30
57	MALDI Imaging Analysis of Neuropeptides in the Africanized Honeybee (<i>Apis mellifera</i>) Brain: Effect of Ontogeny. Journal of Proteome Research, 2014, 13, 3054-3064.	3.7	46
58	Brain Morphophysiology of Africanized Bee Apis mellifera Exposed to Sublethal Doses of Imidacloprid. Archives of Environmental Contamination and Toxicology, 2013, 65, 234-243.	4.1	37
59	Acute Toxicity of Fipronil to the Stingless Bee Scaptotrigona postica Latreille. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 69-72.	2.7	41
60	Cellular responses in the Malpighian tubules of Scaptotrigona postica (Latreille, 1807) exposed to low doses of fipronil and boric acid. Micron, 2013, 46, 57-65.	2.2	34
61	Effects of sublethal doses of imidacloprid in malpighian tubules of africanized <i>Apis mellifera</i> (Hymenoptera, Apidae). Microscopy Research and Technique, 2013, 76, 552-558.	2.2	56
62	Effects of Sublethal Dose of Fipronil on Neuron Metabolic Activity of Africanized Honeybees. Archives of Environmental Contamination and Toxicology, 2013, 64, 456-466.	4.1	38
63	Production of the First Effective Hyperimmune Equine Serum Antivenom against Africanized Bees. PLoS ONE, 2013, 8, e79971.	2.5	20
64	Oral Toxicity of Fipronil Insecticide Against the Stingless Bee Melipona scutellaris (Latreille, 1811). Bulletin of Environmental Contamination and Toxicology, 2012, 89, 921-924.	2.7	41
65	Influence of the insecticide pyriproxyfen on the flight muscle differentiation of <i>Apis mellifera</i> (Hymenoptera, Apidae). Microscopy Research and Technique, 2012, 75, 844-848.	2.2	11
66	Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis) Tj ETQq0 0	0 rggT /O	verlock 10 Tf
67	Toxicological and Histopathological Effects of Boric Acid on <i>Atta sexdens rubropilosa</i> (Hymenoptera: Formicidae) Workers. Journal of Economic Entomology, 2010, 103, 676-690.	1.8	21
68	Suscetibilidade de operárias e larvas de abelhas sociais em relação à ricinina. Iheringia - Serie Zoologia, 2009, 99, 61-65.	0.5	9
69	Toxic effects of methanolic and dichloromethane extracts of flowers and peduncles of Stryphnodendron adstringens (Leguminosae: Mimosoideae) on Apis mellifera and Scaptotrigona postica workers. Journal of Apicultural Research, 2006, 45, 112-116.	1.5	4
70	Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (L.). Insect Biochemistry and Molecular Biology, 2005, 35, 85-91.	2.7	115
71	Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides, 2004, 25, 919-928.	2.4	253
72	Toxicity of barbatimão toApis melliferaandScaptotrigona postica, under laboratory conditions. Journal of Apicultural Research, 2003, 42, 9-12.	1.5	15

OSMAR MALASPINA

#	Article	IF	CITATIONS
73	Toxicity of Dimorphandra mollis to Workers of Apis mellifera. Journal of the Brazilian Chemical Society, 2002, 13, 115-118.	0.6	15
74	Biological activity of astilbin fromDimorphandra mollisagainstAnticarsia gemmatalisandSpodoptera frugiperda. Pest Management Science, 2002, 58, 503-507.	3.4	55
75	Number of ovarioles in workers descendent from crossings between Africanized and Italian honeybees, Apis mellifera L.: comparison among backcrosses and ancestors colonies. Neotropical Entomology, 1998, 27, 237-243.	0.2	5
76	Study of the length of the mouthparts of Africanized, Caucasian and Africanized/Caucasian honey bee crosses, and relationships between glossa size and food gathering behavior. Genetics and Molecular Biology, 1998, 21, 465-470.	1.3	3
77	Number of Ovarioles in Workers Descendent from Crossings Between Africanized and Italian Honeybees (Apis mellifera L.): Comparing Stock, Inbred and F1 Colonies. Neotropical Entomology, 1996, 25, 501-506.	0.2	6
78	EVOLUTION AND POPULATION STRUCTURE OF AFRICANIZED HONEY BEES IN BRAZIL: EVIDENCE FROM SPATIAL ANALYSIS OF MORPHOMETRIC DATA. Evolution; International Journal of Organic Evolution, 1995, 49, 1172-1179.	2.3	20
79	Geographic variation in <i>Apis cerana indica</i> F.: a spatial autocorrelation analysis of morphometric patterns. Journal of Apicultural Research, 1993, 32, 65-72.	1.5	19
80	Análise de caracteres morfológicos e comportamentais em abelhas africanizadas, caucasianas e em descendentes dos seus cruzamentos. Revista Brasileira De Zoologia, 1989, 6, 63-73.	0.5	1
81	STUDY ON SINEACAR EFFECTIVENESS IN CONTROLLING VARROA JACOBSONI. Apidologie, 1981, 12, 289-297.	2.0	14