Refaat sabry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/318514/publications.pdf Version: 2024-02-01

REEANT SARDY

#	Article	IF	CITATIONS
1	Modified extended tanh-function method for solving nonlinear partial differential equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 299, 179-188.	2.1	295
2	Dust-acoustic rogue waves in a nonextensive plasma. Physical Review E, 2011, 84, 066402.	2.1	189
3	Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons. Physics of Plasmas, 2009, 16, .	1.9	127
4	Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma. Physics of Plasmas, 2008, 15, .	1.9	88
5	Modified extended tanh-function method and its applications to nonlinear equations. Applied Mathematics and Computation, 2005, 161, 403-412.	2.2	83
6	Dust-acoustic solitary waves and double layers in a magnetized dusty plasma with nonthermal ions and dust charge variation. Physics of Plasmas, 2005, 12, 082302.	1.9	76
7	Rogue wave in Titan's atmosphere. Astrophysics and Space Science, 2012, 338, 3-8.	1.4	71
8	Nonlinear Dynamics of Rotating Multi-Component Pair Plasmas and e-p-i Plasmas. Plasma and Fusion Research, 2009, 4, 018-018.	0.7	68
9	Nonlinear dust acoustic waves in a nonuniform magnetized complex plasma with nonthermal ions and dust charge variation. Physics of Plasmas, 2007, 14, 032304.	1.9	64
10	Cylindrical and spherical ion-acoustic envelope solitons in multicomponent plasmas with positrons. Physical Review E, 2009, 79, 056402.	2.1	60
11	Zakharov–Kuznetsov–Burgers equation for dust ion acoustic waves. Chaos, Solitons and Fractals, 2008, 36, 628-634.	5.1	51
12	Head-on collision of dust-acoustic solitary waves in an adiabatic hot dusty plasma with external oblique magnetic field andÂtwo-temperature ions. Astrophysics and Space Science, 2010, 325, 201-207.	1.4	49
13	Large amplitude ion-acoustic solitary waves and double layers in multicomponent plasma with positrons. Physics of Plasmas, 2009, 16, .	1.9	48
14	Freak waves in white dwarfs and magnetars. Physics of Plasmas, 2012, 19, .	1.9	48
15	Planar and nonplanar ion-acoustic envelope solitary waves in a very dense electron-positron-ion plasma. European Physical Journal D, 2009, 51, 233-240.	1.3	46
16	Amplitude modulation of hydromagnetic waves and associated rogue waves in magnetoplasmas. Physical Review E, 2012, 86, 036408.	2.1	44
17	A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 326, 93-101.	2.1	43
18	New exact solutions for a generalized variable coefficients 2D KdV equation. Chaos, Solitons and Fractals, 2004, 19, 1083-1086.	5.1	40

REFAAT SABRY

#	Article	IF	CITATIONS
19	On the generation of envelope solitons inÂtheÂpresence ofÂexcess superthermal electrons andÂpositrons. Astrophysics and Space Science, 2011, 333, 203-208.	1.4	40
20	Propagation of three-dimensional ion-acoustic solitary waves in magnetized negative ion plasmas with nonthermal electrons. Physics of Plasmas, 2010, 17, 042301.	1.9	39
21	Solitary and blow-up electrostatic excitations in rotating magnetized electron–positron–ion plasmas. New Journal of Physics, 2009, 11, 033028.	2.9	38
22	Three-dimensional ion-acoustic wave packet in magnetoplasmas with superthermal electrons. Plasma Physics and Controlled Fusion, 2012, 54, 035010.	2.1	36
23	Exact travelling wave solutions for the generalized shallow water wave equation. Chaos, Solitons and Fractals, 2003, 17, 121-126.	5.1	32
24	Head-on collision of ion-acoustic solitary waves in multicomponent plasmas with positrons. Physics of Plasmas, 2010, 17, 082311.	1.9	32
25	Three dimensional cylindrical Kadomtsev–Petviashvili equation in a very dense electron-positron-ion plasma. Physics of Plasmas, 2010, 17, 032305.	1.9	31
26	Propagation of cylindrical and spherical electron-acoustic solitary wave packets in unmagnetized plasma. Astrophysics and Space Science, 2013, 344, 455-461.	1.4	27
27	Head-on collision of ion-acoustic solitons in an ultracold neutral plasma. Astrophysics and Space Science, 2014, 350, 175-184.	1.4	26
28	Explosive and solitary excitations in a very dense magnetoplasma. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5691-5694.	2.1	25
29	Electron-acoustic solitary waves in a magnetized plasma with hot electrons featuring Tsallis distribution. Astrophysics and Space Science, 2012, 341, 579-585.	1.4	25
30	Propagation of three-dimensional electron-acoustic solitary waves. Physics of Plasmas, 2011, 18, .	1.9	24
31	Modulation instability of ion thermal waves in a pair-ion plasma containing charged dust impurities. Physics of Plasmas, 2008, 15, .	1.9	22
32	Three-dimensional cylindrical Kadomtsev–Petviashvili equation in a dusty electronegative plasma. Journal of Plasma Physics, 2010, 76, 453-466.	2.1	22
33	The interaction of two nonplanar solitary waves in electron-positron-ion plasmas: An application in active galactic nuclei. Physics of Plasmas, 2013, 20, .	1.9	22
34	Propagation of the three-dimensional dust acoustic solitons in magnetized quantum plasmas with dust polarity effect. Physics of Plasmas, 2009, 16, .	1.9	18
35	Solitons and double-layers of electron-acoustic waves in magnetized plasma; an application to auroral zone plasma. Astrophysics and Space Science, 2012, 340, 101-108.	1.4	18
36	Nonplanar solitons collision in ultracold neutral plasmas. Physics of Plasmas, 2013, 20, .	1.9	18

REFAAT SABRY

#	Article	IF	CITATIONS
37	Nonlinear wave modulation of cylindrical and spherical quantum ion-acoustic solitary waves. Physics of Plasmas, 2008, 15, 122310.	1.9	17
38	Three-dimensional nonlinear SchrĶdinger equation in electron-positron-ion magnetoplasmas. Physics of Plasmas, 2011, 18, 032302.	1.9	17
39	Electrostatic structures associated with dusty electronegative magnetoplasmas. New Journal of Physics, 2010, 12, 073010.	2.9	16
40	lon-acoustic double layers in magnetized positive-negative ion plasmas with nonthermal electrons. Astrophysics and Space Science, 2012, 340, 77-85.	1.4	16
41	Freak waves in Saturn's magnetosphere. Astrophysics and Space Science, 2015, 355, 33-41.	1.4	15
42	Two New Applications of the Modified Extended Tanh-Function Method. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2003, 58, 39-44.	1.5	13
43	Ionospheric losses of Venus in the solar wind. Advances in Space Research, 2020, 65, 129-137.	2.6	12
44	Nonlinear wave propagation of large amplitude ion-acoustic solitary waves in negative ion plasmas with superthermal electrons. Journal of Plasma Physics, 2013, 79, 613-621.	2.1	11
45	Formation and dynamics of electrostatic solitary waves associated with relativistic electron beam. Physics of Plasmas, 2012, 19, 042105.	1.9	9
46	Nonlinear phenomenon in nanostructures creation by fast cluster ions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 102-105.	2.1	9
47	New super waveforms for modified Korteweg-de-Veries-equation. Results in Physics, 2020, 19, 103420.	4.1	9
48	Contribution of Higher-order Nonlinearity to Nonlinear Dust Acoustic Solitary Waves in Two Ion Temperature Dusty Plasmas with Different Size Dust Grains. International Journal of Nonlinear Sciences and Numerical Simulation, 2004, 5, .	1.0	8
49	New exact solutions for a generalized variable-coefficient KdV equation. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 2763-2770.	1.1	8
50	Cylindrical and spherical soliton collision of electron-acoustic waves in non-Maxwellian plasma. Astrophysics and Space Science, 2014, 349, 773-780.	1.4	8
51	HCC-DETECT: a combination of nuclear, cytoplasmic, and oncofetal proteins as biomarkers for hepatocellular carcinoma. Tumor Biology, 2015, 36, 7667-7674.	1.8	8
52	Modulated 3D electron-acoustic rogue waves in magnetized plasma with nonthermal electrons. Astrophysics and Space Science, 2017, 362, 1.	1.4	8
53	Exact travelling wave solutions for a diffusion–convection equation in two and three spatial dimensions. Computer Physics Communications, 2004, 158, 113-116.	7.5	7
54	On the positron superthermality and ionic masses contributions on the wave behaviour in collisional space plasma. Advances in Space Research, 2020, 66, 259-265.	2.6	7

REFAAT SABRY

#	Article	IF	CITATIONS
55	On the formation of nanostructures by inducing confined plasma expansion. Results in Physics, 2019, 15, 102696.	4.1	6
56	Head-On Collision of Electron-Acoustic Solitons in a Magnetized Plasma. IEEE Transactions on Plasma Science, 2019, 47, 762-769.	1.3	6
57	Role of electrons non-extensivity on the fully nonlinear dust-ion acoustic solitary waves. Physica Scripta, 2021, 96, 045209.	2.5	6
58	Group classification and symmetry reduction of variable coefficient nonlinear diffusionÂconvection equation. Journal of Physics A, 2002, 35, 8055-8063.	1.6	5
59	Group classification and symmetry reduction of a (2+1) dimensional diffusion-advection equation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2005, 56, 986-999.	1.4	5
60	Self-excited plasmon polaritons in counterstreaming quantum plasmas. Physics of Plasmas, 2009, 16, 122106.	1.9	5
61	New Soliton Applications in Earth's Magnetotail Plasma at Critical Densities. Frontiers in Physics, 2020, 8, .	2.1	5
62	The optimum shielding around a test charge in plasmas containing two negative ions. Journal of Plasma Physics, 2011, 77, 663-673.	2.1	3
63	lon escape from the upper ionosphere of Titan triggered by the solar wind. Astrophysics and Space Science, 2019, 364, 1.	1.4	3
64	ON IMPROVED HOMOGENEOUS BALANCE METHOD, AUTO-BÃ,,CKLUND TRANSFORMATION AND MULTI-SOLITONIC SOLUTIONS OF A VARIABLE-COEFFICIENT BURGERS EQUATION. International Journal of Modern Physics C, 2008, 19, 1821-1827.	1.7	2
65	New Travelling Wave Solutions for an Asymmetric Model of a Rod in a Lattice Fluid with Nonlinear Advection. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2006, 61, 430-438.	1.5	1
66	EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF LINE-SHAPED MICROWAVE ARGON PLASMA SOURCE. Progress in Electromagnetics Research M, 2015, 43, 183-192.	0.9	1
67	Effects of the ionic masses and positron density on the damped behavior in nonthermal collisional plasmas. Indian Journal of Physics, 2020, 95, 1909.	1.8	1
68	Electron and positron nonthermality effects on the formation of damped solitons in collisional multi-component plasmas. Chinese Journal of Physics, 2021, 72, 670-680.	3.9	1