
## David A Liberles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3184476/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | 2021 Zuckerkandl Prize. Journal of Molecular Evolution, 2022, 90, 1-1.                                                                                         | 1.8 | Ο         |
| 2  | Ancestral Sequence Reconstruction: From Chemical Paleogenetics to Maximum Likelihood Algorithms and Beyond. Journal of Molecular Evolution, 2021, 89, 157-164. | 1.8 | 25        |
| 3  | The Journal of Molecular Evolution Turns 50. Journal of Molecular Evolution, 2021, 89, 119-121.                                                                | 1.8 | 2         |
| 4  | Inferring the number and position of changes in selective regime in a non-equilibrium mutation-selection framework. Bmc Ecology and Evolution, 2021, 21, 39.   | 1.6 | 2         |
| 5  | Detecting Selection on Segregating Gene Duplicates in a Population. Journal of Molecular Evolution, 2021, 89, 554-564.                                         | 1.8 | 2         |
| 6  | Characterizing amino acid substitution with complete linkage of sites on a lineage. Genome Biology and Evolution, 2021, 13, .                                  | 2.5 | 0         |
| 7  | 2020 Zuckerkandl Prize. Journal of Molecular Evolution, 2021, 89, 1-1.                                                                                         | 1.8 | Ο         |
| 8  | 2019 Zuckerkandl Prize. Journal of Molecular Evolution, 2020, 88, 121-121.                                                                                     | 1.8 | 0         |
| 9  | Level-dependent QBD models for the evolution of a family of gene duplicates. Stochastic Models, 2020, 36, 285-311.                                             | 0.5 | 6         |
| 10 | Evolutionary Processes and Biophysical Mechanisms: Revisiting Why Evolved Proteins Are Marginally Stable. Journal of Molecular Evolution, 2020, 88, 415-417.   | 1.8 | 5         |
| 11 | Detecting Signatures of Positive Selection against a Backdrop of Compensatory Processes. Molecular<br>Biology and Evolution, 2020, 37, 3353-3362.              | 8.9 | 2         |
| 12 | Characterizing lineage-specific evolution and the processes driving genomic diversification in chordates. BMC Evolutionary Biology, 2020, 20, 24.              | 3.2 | 0         |
| 13 | Emerging Frontiers in the Study of Molecular Evolution. Journal of Molecular Evolution, 2020, 88, 211-226.                                                     | 1.8 | 8         |
| 14 | Evolutionary Models. , 2019, , 712-718.                                                                                                                        |     | 0         |
| 15 | A New Editorial Beginning at Journal of Molecular Evolution. Journal of Molecular Evolution, 2019, 87, 69-71.                                                  | 1.8 | 2         |
| 16 | Evolution in the light of fitness landscape theory. Trends in Ecology and Evolution, 2019, 34, 69-82.                                                          | 8.7 | 124       |
| 17 | Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates. Methods in<br>Molecular Biology, 2019, 1851, 49-62.                     | 0.9 | 16        |
| 18 | Protein evolution depends on multiple distinct population size parameters. BMC Evolutionary Biology,<br>2018, 18, 17.                                          | 3.2 | 11        |

DAVID A LIBERLES

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A new parameterâ€rich structureâ€aware mechanistic model for amino acid substitution during<br>evolution. Proteins: Structure, Function and Bioinformatics, 2018, 86, 218-228.             | 2.6  | 8         |
| 20 | Evolution and Structure of Proteins and Proteomes. Genes, 2018, 9, 583.                                                                                                                    | 2.4  | 3         |
| 21 | Using the Mutation-Selection Framework to Characterize Selection on Protein Sequences. Genes, 2018, 9, 409.                                                                                | 2.4  | 12        |
| 22 | ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability. Systematic Biology, 2017, 66, syw121.                                         | 5.6  | 29        |
| 23 | The Adaptive Evolution Database (TAED): A New Release of a Database of Phylogenetically Indexed Gene<br>Families from Chordates. Journal of Molecular Evolution, 2017, 85, 46-56.          | 1.8  | 5         |
| 24 | Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization.<br>BMC Evolutionary Biology, 2017, 17, 38.                                                 | 3.2  | 17        |
| 25 | Characterizing the roles of changing population size and selection on the evolution of flux control in metabolic pathways. BMC Evolutionary Biology, 2017, 17, 117.                        | 3.2  | 9         |
| 26 | Selection on protein structure, interaction, and sequence. Protein Science, 2016, 25, 1168-1178.                                                                                           | 7.6  | 47        |
| 27 | Flux Control in Glycolysis Varies Across the Tree of Life. Journal of Molecular Evolution, 2016, 82, 146-161.                                                                              | 1.8  | 15        |
| 28 | The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533, 200-205.                                                                                            | 27.8 | 1,021     |
| 29 | Extracting functional trends from whole genome duplication events using comparative genomics.<br>Biological Procedures Online, 2016, 18, 11.                                               | 2.9  | 45        |
| 30 | Selection on metabolic pathway function in the presence of mutation-selection-drift balance leads to rate-limiting steps that are not evolutionarily stable. Biology Direct, 2016, 11, 31. | 4.6  | 15        |
| 31 | Models for gene duplication when dosage balance works as a transition state to subsequent neo- or sub-functionalization. BMC Evolutionary Biology, 2016, 16, 45.                           | 3.2  | 35        |
| 32 | A generalized birth and death process for modeling the fates of gene duplication. BMC Evolutionary<br>Biology, 2015, 15, 275.                                                              | 3.2  | 12        |
| 33 | Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast.<br>BMC Evolutionary Biology, 2015, 15, 232.                                            | 3.2  | 14        |
| 34 | What Fraction of Duplicates Observed in Recently Sequenced Genomes Is Segregating and Destined to Fail to Fix?. Genome Biology and Evolution, 2015, 7, 2258-2264.                          | 2.5  | 5         |
| 35 | Genetic Simulation Tools for Postâ€Genome Wide Association Studies of Complex Diseases. Genetic<br>Epidemiology, 2015, 39, 11-19.                                                          | 1.3  | 22        |
| 36 | On Mechanistic Modeling of Gene Content Evolution: Birth-Death Models and Mechanisms of Gene<br>Birth and Gene Retention. Computation, 2014, 2, 112-130.                                   | 2.0  | 10        |

DAVID A LIBERLES

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Molecular traces of alternative social organization in a termite genome. Nature Communications, 2014, 5, 3636.                                                                                     | 12.8 | 371       |
| 38 | State-of the art methodologies dictate new standards for phylogenetic analysis. BMC Evolutionary<br>Biology, 2013, 13, 161.                                                                        | 3.2  | 51        |
| 39 | On the Need for Mechanistic Models in Computational Genomics and Metagenomics. Genome Biology and Evolution, 2013, 5, 2008-2018.                                                                   | 2.5  | 40        |
| 40 | Genomics and Bioinformatics of the PVC Superphylum. , 2013, , 165-193.                                                                                                                             |      | 2         |
| 41 | CASS: Protein sequence simulation with explicit genotype-phenotype mapping. Trends in Evolutionary Biology, 2012, 4, 9.                                                                            | 0.4  | 7         |
| 42 | A Phylogenetic Analysis of Normal Modes Evolution in Enzymes and Its Relationship to Enzyme<br>Function. Journal of Molecular Biology, 2012, 422, 442-459.                                         | 4.2  | 22        |
| 43 | The interface of protein structure, protein biophysics, and molecular evolution. Protein Science, 2012, 21, 769-785.                                                                               | 7.6  | 188       |
| 44 | Modeling Proteins at the Interface of Structure, Evolution, and Population Genetics. Biological and Medical Physics Series, 2012, , 347-361.                                                       | 0.4  | 4         |
| 45 | Detecting and understanding natural selection. , 2012, , 73-96.                                                                                                                                    |      | 26        |
| 46 | The Evolution of Protein Structures and Structural Ensembles Under Functional Constraint. Genes, 2011, 2, 748-762.                                                                                 | 2.4  | 50        |
| 47 | Toward a General Model for the Evolutionary Dynamics of Gene Duplicates. Genome Biology and Evolution, 2011, 3, 1197-1209.                                                                         | 2.5  | 57        |
| 48 | Biophysical and structural considerations for protein sequence evolution. BMC Evolutionary Biology, 2011, 11, 361.                                                                                 | 3.2  | 50        |
| 49 | Fast Side Chain Replacement in Proteins Using a Coarse-Grained Approach for Evaluating the Effects of<br>Mutation During Evolution. Journal of Molecular Evolution, 2011, 73, 23-33.               | 1.8  | 5         |
| 50 | Binding constraints on the evolution of enzymes and signalling proteins: the important role of negative pleiotropy. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1930-1935. | 2.6  | 27        |
| 51 | Finding the balance between the mathematical and biological optima in multiple sequence alignment.<br>Trends in Evolutionary Biology, 2010, 2, 7.                                                  | 0.4  | 30        |
| 52 | Reading the Story in DNA: A Beginner's Guide to Molecular Evolution. Systematic Biology, 2009, 58, 161-162.                                                                                        | 5.6  | 0         |
| 53 | Keeping the blood flowing—plasminogen activator genes and feeding behavior in vampire bats. Die<br>Naturwissenschaften, 2009, 96, 39-47.                                                           | 1.6  | 27        |
| 54 | Linking sequence to function in drug design with ancestral sequence reconstruction. , 2007, , 34-40.                                                                                               |      | 3         |

DAVID A LIBERLES

| #  | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A systematic analysis of lineage-specific evolution in metabolic pathways. Gene, 2007, 387, 67-74.                                                                                                                                                                       | 2.2  | 5         |
| 56 | Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. Journal of<br>Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 58-73.                                                                            | 1.3  | 148       |
| 57 | The Pattern of Evolution of Smaller-Scale Gene Duplicates in Mammalian Genomes is More Consistent with Neo- than Subfunctionalisation. Journal of Molecular Evolution, 2007, 65, 574-588.                                                                                | 1.8  | 52        |
| 58 | Probabilistic models and their impact on the accuracy of reconstructed ancestral protein sequences. , 2007, , 43-57.                                                                                                                                                     |      | 6         |
| 59 | Using Evolutionary Information and Ancestral Sequences to Understand the Sequence–Function<br>Relationship in GLP-1 Agonists. Journal of Molecular Biology, 2006, 363, 977-988.                                                                                          | 4.2  | 23        |
| 60 | Optimal Gene Trees from Sequences and Species Trees Using a Soft Interpretation of Parsimony.<br>Journal of Molecular Evolution, 2006, 63, 240-250.                                                                                                                      | 1.8  | 78        |
| 61 | A systematic search for positive selection in higher plants (Embryophytes). BMC Plant Biology, 2006, 6,<br>12.                                                                                                                                                           | 3.6  | 78        |
| 62 | Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evolutionary Biology, 2005, 5, 28.                                                                                                                                           | 3.2  | 311       |
| 63 | The Adaptive Evolution Database (TAED): a phylogeny based tool for comparative genomics. Nucleic Acids Research, 2004, 33, D495-D497.                                                                                                                                    | 14.5 | 73        |
| 64 | Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics, 2004, 5, 48.                                                                                                                                                        | 2.6  | 47        |
| 65 | Myostatin rapid sequence evolution in ruminants predates domestication. Molecular Phylogenetics and Evolution, 2004, 33, 782-790.                                                                                                                                        | 2.7  | 38        |
| 66 | The adaptive evolution database (TAED). Genome Biology, 2001, 2, research0028.1.                                                                                                                                                                                         | 9.6  | 35        |
| 67 | Functional inferences from reconstructed evolutionary biology involving rectified databases – an evolutionarily grounded approach to functional genomics. Research in Microbiology, 2000, 151, 97-106.                                                                   | 2.1  | 58        |
| 68 | Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Molecular Microbiology, 1997, 26, 261-275.                                                                                                              | 2.5  | 47        |
| 69 | Triple-Helix Formation by Pyrimidine Oligonucleotides Containing Nonnatural Nucleosides with<br>Extended Aromatic Nucleobases: Intercalation from the major groove as a method for recognizing C·G<br>and T · A base pairs. Helvetica Chimica Acta, 1997, 80, 2002-2022. | 1.6  | 32        |