Elena Kudryashova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3183449/publications.pdf

Version: 2024-02-01

40 papers 1,806 citations

304743 22 h-index 302126 39 g-index

43 all docs 43 docs citations

times ranked

43

2566 citing authors

#	Article	IF	CITATIONS
1	Inhibition of SARS-CoV-2 Infection by Human Defensin HNP1 and Retrocyclin RC-101. Journal of Molecular Biology, 2022, 434, 167225.	4.2	19
2	Involvement of Smi1 in cell wall integrity and glucan synthase Bgs4 localization during fission yeast cytokinesis. Molecular Biology of the Cell, 2022, 33, mbcE21040214.	2.1	4
3	Magic angle spinning NMR structure of human cofilin-2 assembled on actin filaments reveals isoform-specific conformation and binding mode. Nature Communications, 2022, 13, 2114.	12.8	9
4	Allosteric regulation controls actin-bundling properties of human plastins. Nature Structural and Molecular Biology, 2022, 29, 519-528.	8.2	11
5	Photorhabdus luminescens TccC3 Toxin Targets the Dynamic Population of F-Actin and Impairs Cell Cortex Integrity. International Journal of Molecular Sciences, 2022, 23, 7026.	4.1	4
6	Rounding Out the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers. International Journal of Molecular Sciences, 2021, 22, 718.	4.1	6
7	Intein-mediated cytoplasmic reconstitution of a split toxin enables selective cell ablation in mixed populations and tumor xenografts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22090-22100.	7.1	11
8	Plastin 3 in X-Linked Osteoporosis: Imbalance of Ca2+-Dependent Regulation Is Equivalent to Protein Loss. Frontiers in Cell and Developmental Biology, 2020, 8, 635783.	3.7	7
9	Osteogenesis imperfecta mutations in plastin 3 lead to impaired calcium regulation of actin bundling. Bone Research, 2020, 8, 21.	11.4	32
10	Oligomerization Affects the Ability of Human Cyclase-Associated Proteins 1 and 2 to Promote Actin Severing by Cofilins. International Journal of Molecular Sciences, 2019, 20, 5647.	4.1	27
11	Investigations into the Structure and Intermolecular Interface of Human Cofilin-2 Assembled on Actin Filaments by Magic Angle Spinning NMR. Biophysical Journal, 2019, 116, 456a.	0.5	0
12	Actin Cross-Linking Toxin Is a Universal Inhibitor of Tandem-Organized and Oligomeric G-Actin Binding Proteins. Current Biology, 2018, 28, 1536-1547.e9.	3.9	20
13	Targeting and inactivation of bacterial toxins by human defensins. Biological Chemistry, 2017, 398, 1069-1085.	2.5	22
14	Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy. Scientific Reports, 2017, 7, 44506.	3.3	19
15	The Roles of Actin-Binding Domains 1 and 2 in the Calcium-Dependent Regulation of Actin Filament Bundling by Human Plastins. Journal of Molecular Biology, 2017, 429, 2490-2508.	4.2	37
16	Pathogenic Mechanisms of Actin Cross-Linking Toxins: Peeling Away the Layers. Current Topics in Microbiology and Immunology, 2016, 399, 87-112.	1.1	10
17	Thermodynamic instability of viral proteins is a pathogen-associated molecular pattern targeted by human defensins. Scientific Reports, 2016, 6, 32499.	3.3	10
18	The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2. Human Molecular Genetics, 2015, 24, 2873-2883.	2.9	38

#	Article	IF	CITATIONS
19	ACD toxin–produced actin oligomers poison formin-controlled actin polymerization. Science, 2015, 349, 535-539.	12.6	46
20	Retrocyclins neutralize bacterial toxins by potentiating their unfolding. Biochemical Journal, 2015, 467, 311-320.	3.7	14
21	Defensins versus pathogens: an unfolding story. Oncotarget, 2015, 6, 28533-28534.	1.8	7
22	Thermodynamic properties of the effector domains of <scp>MARTX</scp> toxins suggest their unfolding for translocation across the host membrane. Molecular Microbiology, 2014, 92, 1056-1071.	2.5	27
23	Calcium binding is essential for plastin 3 function in Smn-deficient motoneurons. Human Molecular Genetics, 2014, 23, 1990-2004.	2.9	46
24	Human Defensins Facilitate Local Unfolding of Thermodynamically Unstable Regions of Bacterial Protein Toxins. Immunity, 2014, 41, 709-721.	14.3	71
25	Glutamyl Phosphate Is an Activated Intermediate in Actin Crosslinking by Actin Crosslinking Domain (ACD) Toxin. PLoS ONE, 2012, 7, e45721.	2.5	14
26	Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. Journal of Clinical Investigation, 2012, 122, 1764-1776.	8.2	99
27	Pathogenity of some limb girdle muscular dystrophy mutations can result from reduced anchorage to myofibrils and altered stability of calpain 3. Human Molecular Genetics, 2011, 20, 3331-3345.	2.9	37
28	Limb-girdle muscular dystrophy 2H and the role of TRIM32. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 101, 125-133.	1.8	35
29	The common missense mutation D489N in TRIM32 causing limb girdle muscular dystrophy 2H leads to loss of the mutated protein in knock-in mice resulting in a Trim32-null phenotype. Human Molecular Genetics, 2011, 20, 3925-3932.	2.9	40
30	Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-Î ² . Journal of Clinical Investigation, 2009, 119, 1583-1594.	8.2	251
31	Mitochondrial abnormalities, energy deficit and oxidative stress are features of calpain 3 deficiency in skeletal muscle. Human Molecular Genetics, 2009, 18, 3194-3205.	2.9	57
32	Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Human Molecular Genetics, 2009, 18, 1353-1367.	2.9	103
33	Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Human Molecular Genetics, 2008, 17, 3271-3280.	2.9	87
34	Calpain activation impairs neuromuscular transmission in a mouse model of the slow-channel myasthenic syndrome. Journal of Clinical Investigation, 2007, 117, 2903-2912.	8.2	28
35	Identification of putativein vivo substrates of calpain 3 by comparative proteomics of overexpressing transgenic and nontransgenic mice. Proteomics, 2006, 6, 6075-6084.	2.2	45
36	Regulation of the M-Cadherin-Î ² -Catenin Complex by Calpain 3 during Terminal Stages of Myogenic Differentiation. Molecular and Cellular Biology, 2006, 26, 8437-8447.	2.3	55

#	Article	IF	CITATION
37	Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin–proteasome pathway. Human Molecular Genetics, 2005, 14, 2125-2134.	2.9	127
38	Mdm muscular dystrophy: interactions with calpain 3 and a novel functional role for titin's N2A domain. Human Molecular Genetics, 2005, 14, 2801-2811.	2.9	50
39	Trim32 is a Ubiquitin Ligase Mutated in Limb Girdle Muscular Dystrophy Type 2H that Binds to Skeletal Muscle Myosin and Ubiquitinates Actin. Journal of Molecular Biology, 2005, 354, 413-424.	4.2	178
40	Calpain 3 cleaves filamin C and regulates its ability to interact with ?- and ?-sarcoglycans. Muscle and Nerve, 2003, 28, 472-483.	2.2	82