
Zhigang Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3183376/publications.pdf Version: 2024-02-01

ZHICANC YIN

#	Article	IF	CITATIONS
1	Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications. , 2022, 1, 100001.		14
2	Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors. Advanced Science, 2022, 9, .	11.2	30
3	A Dual Post-Treatment Method for Improving the Performance of Ternary NiMgO Semiconductor Interfacial Layers and Their Organic Solar Cells [※] . Acta Chimica Sinica, 2022, 80, 581.	1.4	2
4	Impact of Different Intermediate Layers on the Morphology and Crystallinity of TiO ₂ Grown on Carbon Nanotubes by Atomic Layer Deposition. Advanced Materials Interfaces, 2021, 8, 2100759.	3.7	7
5	Artificial intelligence: A powerful paradigm for scientific research. Innovation(China), 2021, 2, 100179.	9.1	200
6	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	9.1	306
7	Broadband organic photodetectors based on ternary blend active layers with enhanced and spectrally flat response. Journal of Materials Chemistry C, 2020, 8, 14049-14055.	5.5	31
8	Improving the charge transport of the ternary blend active layer for efficient semitransparent organic solar cells. Energy and Environmental Science, 2020, 13, 5177-5185.	30.8	75
9	Sandwich structured dielectrics for air-stable and flexible low-voltage organic transistors in ultrasensitive pressure sensing. Materials Chemistry Frontiers, 2020, 4, 1459-1470.	5.9	21
10	Call for papers on special issue "Thin-film materials, devices and carrier dynamics for flexible electronics― Materials International, 2020, 2, 062-062.	0.6	0
11	Polyelectrolyte Dielectrics for Flexible Lowâ€Voltage Organic Thinâ€Film Transistors in Highly Sensitive Pressure Sensing. Advanced Functional Materials, 2019, 29, 1806092.	14.9	71
12	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	16.0	123
13	Ladder-type heteroheptacene-cored semiconductors for small-molecule solar cells. Dyes and Pigments, 2018, 149, 747-754.	3.7	7
14	Binary polymer composite dielectrics for flexible low-voltage organic field-effect transistors. Organic Electronics, 2018, 53, 205-212.	2.6	35
15	Solutionâ€Processed Bilayer Dielectrics for Flexible Lowâ€Voltage Organic Fieldâ€Effect Transistors in Pressure‧ensing Applications. Advanced Science, 2018, 5, 1701041.	11.2	66
16	Wearable Sensors: Micropatterned Elastic Gold-Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors (Adv. Mater. Technol. 7/2018). Advanced Materials Technologies, 2018, 3, 1870029.	5.8	5
17	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	5.8	59
18	Long lifetime stable and efficient semitransparent organic solar cells using a ZnMgO-modified cathode combined with a thin MoO ₃ /Ag anode. Journal of Materials Chemistry A, 2017, 5, 3888-3899.	10.3	38

ZHIGANG YIN

#	Article	IF	CITATIONS
19	Indacenodithiophene-based wide bandgap copolymers for high performance single-junction and tandem polymer solar cells. Nano Energy, 2017, 33, 313-324.	16.0	52
20	Low-Temperature Solution-Processed Zinc Tin Oxide Film as a Cathode Interlayer for Organic Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 6186-6193.	8.0	40
21	High performance thermal-treatment-free tandem polymer solar cells with high fill factors. Organic Electronics, 2017, 47, 79-84.	2.6	14
22	Controllable ZnMgO Electronâ€Transporting Layers for Longâ€Term Stable Organic Solar Cells with 8.06% Efficiency after Oneâ€Year Storage. Advanced Energy Materials, 2016, 6, 1501493.	19.5	72
23	Asymmetricâ€Indenothiopheneâ€Based Copolymers for Bulk Heterojunction Solar Cells with 9.14% Efficiency. Advanced Materials, 2016, 28, 3359-3365.	21.0	97
24	Organic Solar Cells: Controllable ZnMgO Electron-Transporting Layers for Long-Term Stable Organic Solar Cells with 8.06% Efficiency after One-Year Storage (Adv. Energy Mater. 4/2016). Advanced Energy Materials, 2016, 6, n/a-n/a.	19.5	0
25	Solution-processed MoS _x thin-films as hole-transport layers for efficient polymer solar cells. RSC Advances, 2016, 6, 39137-39143.	3.6	8
26	Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Advanced Science, 2016, 3, 1500362.	11.2	389
27	Side-chain engineering of diindenocarbazole-based large bandgap copolymers toward high performance polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 6160-6168.	5.5	14
28	Improved synthesis and photovoltaic performance of donor–acceptor copolymers based on dibenzothiophene-cored ladder-type heptacyclic units. Journal of Materials Chemistry C, 2015, 3, 5631-5641.	5.5	13
29	Shell Structure Control of PPy-Modified CuO Composite Nanoleaves for Lithium Batteries with Improved Cyclic Performance. ACS Sustainable Chemistry and Engineering, 2015, 3, 507-517.	6.7	54
30	An anode buffer layer with size-controlled Ag nanoparticles for polymer solar cells with improved efficiencies. RSC Advances, 2015, 5, 16153-16161.	3.6	11
31	Dialkoxynaphthalene as an electron-rich unit for high-performance polymer solar cells with large open circuit voltages. Polymer, 2015, 67, 258-266.	3.8	3
32	Ladder-type tetra-p-phenylene-based copolymers for efficient polymer solar cells with open-circuit voltages approaching 1.1 V. Journal of Materials Chemistry A, 2015, 3, 21672-21681.	10.3	11
33	Solution-derived poly(ethylene glycol)-TiO x nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Research, 2015, 8, 456-468.	10.4	38
34	Dinaphtho-s-indacene-based copolymers for inverted organic solar cells with high open-circuit voltages. Polymer, 2014, 55, 2262-2270.	3.8	5
35	Bandgap Tunable Zn _{1â€<i>x</i>} Mg _{<i>x</i>} O Thin Films as Highly Transparent Cathode Buffer Layers for Highâ€Performance Inverted Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301404.	19.5	93
36	Improving the photovoltaic performance of ladder-type dithienonaphthalene-containing copolymers through structural isomerization. Journal of Materials Chemistry A, 2014, 2, 13905-13915.	10.3	22

ZHIGANG YIN

#	Article	IF	CITATIONS
37	Diindenocarbazole-based large bandgap copolymers for high-performance organic solar cells with large open circuit voltages. Polymer Chemistry, 2014, 5, 6847-6856.	3.9	22
38	Inverted Organic Solar Cells (OSCs). , 2014, , 215-242.		2
39	High performance n-channel thin-film field-effect transistors based on angular-shaped naphthalene tetracarboxylic diimides. Organic Electronics, 2013, 14, 2859-2865.	2.6	9
40	Interface Control of Semiconducting Metal Oxide Layers for Efficient and Stable Inverted Polymer Solar Cells with Open-Circuit Voltages over 1.0 Volt. ACS Applied Materials & Interfaces, 2013, 5, 9015-9025.	8.0	64
41	Ladderâ€ŧype Diindenopyrazine Based Conjugated Copolymers for Organic Solar Cells with High Openâ€circuit Voltages. Chinese Journal of Chemistry, 2013, 31, 1409-1417.	4.9	7
42	Tuning the frontier molecular orbital energy levels of <i>n</i> â€type conjugated copolymers by using angularâ€shaped naphthalene tetracarboxylic diimides, and their use in allâ€polymer solar cells with high openâ€circuit voltages. Journal of Polymer Science Part A, 2013, 51, 1999-2005.	2.3	23
43	Low Band Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor Moiety for Efficient Polymer Solar Cells. ACS Macro Letters, 2013, 2, 605-608.	4.8	51
44	Ladder-Type Dithienonaphthalene-Based Donor–Acceptor Copolymers for Organic Solar Cells. Macromolecules, 2013, 46, 4813-4821.	4.8	40
45	Novel ladder-type heteroheptacene-based copolymers for bulk heterojunction solar cells. Journal of Materials Chemistry, 2012, 22, 16032.	6.7	19
46	Controlled Synthesis and Energy Applications of Oneâ€Ðimensional Conducting Polymer Nanostructures: An Overview. Advanced Energy Materials, 2012, 2, 179-218.	19.5	329
47	CuO/polypyrrole core–shell nanocomposites as anode materials for lithium-ion batteries. Electrochemistry Communications, 2012, 20, 40-43.	4.7	115
48	Applications of ZnO in organic and hybrid solar cells. Energy and Environmental Science, 2011, 4, 3861.	30.8	478
49	Hydrothermal synthesis of β-cobalt hydroxide with various morphologies in water/ethanol solutions. Materials Letters, 2011, 65, 41-43.	2.6	21
50	One-dimensional 8-hydroxyquinoline metal complex nanomaterials: synthesis, optoelectronic properties, and applications. Journal of Materials Science, 2011, 46, 2397-2409.	3.7	24