Stephan D Ewert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3182666/publications.pdf

Version: 2024-02-01

257450 276875 2,013 74 24 41 citations g-index h-index papers 79 79 79 915 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Characterizing frequency selectivity for envelope fluctuations. Journal of the Acoustical Society of America, 2000, 108, 1181-1196.	1.1	235
2	A computational model of human auditory signal processing and perception. Journal of the Acoustical Society of America, 2008, 124, 422-438.	1.1	157
3	A multi-resolution envelope-power based model for speech intelligibility. Journal of the Acoustical Society of America, 2013, 134, 436-446.	1.1	136
4	Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication, 2011, 53, 592-605.	2.8	113
5	Spectro-temporal processing in the envelope-frequency domain. Journal of the Acoustical Society of America, 2002, 112, 2921-2931.	1.1	76
6	The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. Journal of the Acoustical Society of America, 2011, 129, 3856-3872.	1.1	63
7	Predicting speech intelligibility with deep neural networks. Computer Speech and Language, 2018, 48, 51-66.	4.3	56
8	External and internal limitations in amplitude-modulation processing. Journal of the Acoustical Society of America, 2004, 116, 478-490.	1.1	53
9	Auditory stream formation affects comodulation masking release retroactively. Journal of the Acoustical Society of America, 2009, 125, 2182-2188.	1.1	47
10	A Computationally-Efficient and Perceptually-Plausible Algorithm for Binaural Room Impulse Response Simulation. AES: Journal of the Audio Engineering Society, 2014, 62, 748-766.	1.0	47
11	Psychophysical and Physiological Evidence for Fast Binaural Processing. Journal of Neuroscience, 2008, 28, 2043-2052.	3.6	45
12	Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age. Hearing Research, 2016, 331, 27-40.	2.0	43
13	Optimized loudness-function estimation for categorical loudness scaling data. Hearing Research, 2014, 316, 16-27.	2.0	42
14	Modeling comodulation masking release using an equalization-cancellation mechanism. Journal of the Acoustical Society of America, 2007, 121, 2111-2126.	1.1	41
15	Lateralization of stimuli with independent fine-structure and envelope-based temporal disparities. Journal of the Acoustical Society of America, 2009, 125, 1622-1635.	1.1	40
16	Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation. Journal of the Acoustical Society of America, 2017, 141, 971-980.	1.1	37
17	The effect of overall level on sensitivity to interaural differences of time and level at high frequencies. Journal of the Acoustical Society of America, 2013, 134, 494-502.	1.1	36
18	Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. Journal of the Acoustical Society of America, 2016, 140, 121-131.	1.1	34

#	Article	IF	Citations
19	Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Research, 2008, 1220, 234-245.	2.2	32
20	Spectral and binaural loudness summation for hearing-impaired listeners. Hearing Research, 2016, 335, 179-192.	2.0	31
21	A simulation framework for auditory discrimination experiments: Revealing the importance of across-frequency processing in speech perception. Journal of the Acoustical Society of America, 2016, 139, 2708-2722.	1.1	30
22	Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli. Journal of the Acoustical Society of America, 2017, 141, 1862-1873.	1.1	30
23	A neural circuit transforming temporal periodicity information into a rate-based representation in the mammalian auditory system. Journal of the Acoustical Society of America, 2007, 121, 310-326.	1.1	29
24	Monaural speech intelligibility and detection in maskers with varying amounts of spectro-temporal speech features. Journal of the Acoustical Society of America, 2016, 140, 524-540.	1.1	27
25	Better-ear glimpsing with symmetrically-placed interferers in bilateral cochlear implant users. Journal of the Acoustical Society of America, 2018, 143, 2128-2141.	1.1	26
26	On the limitations of sound localization with hearing devices. Journal of the Acoustical Society of America, 2019, 146, 1732-1744.	1.1	25
27	Envelope and intensity based prediction of psychoacoustic masking and speech intelligibility. Journal of the Acoustical Society of America, 2016, 140, 1023-1038.	1.1	23
28	A twoâ€path model of auditory modulation detection using temporal fine structure and envelope cues. European Journal of Neuroscience, 2020, 51, 1265-1278.	2.6	22
29	The role of short-time intensity and envelope power for speech intelligibility and psychoacoustic masking. Journal of the Acoustical Society of America, 2017, 142, 1098-1111.	1.1	20
30	Restoring Perceived Loudness for Listeners With Hearing Loss. Ear and Hearing, 2018, 39, 664-678.	2.1	20
31	Modulation masking produced by complex tone modulators. Journal of the Acoustical Society of America, 2003, 114, 2135-2146.	1.1	19
32	Evaluation of Spatial Audio Reproduction Schemes for Application in Hearing Aid Research. Acta Acustica United With Acustica, 2015, 101, 842-854.	0.8	19
33	Modulation masking produced by second-order modulators. Journal of the Acoustical Society of America, 2005, 117, 2158-2168.	1.1	18
34	Assessment of auditory nonlinearity for listeners with different hearing losses using temporal masking and categorical loudness scaling. Hearing Research, 2011, 280, 177-191.	2.0	18
35	A framework for testing and comparing binaural models. Hearing Research, 2018, 360, 92-106.	2.0	18
36	Adapting Hearing Devices to the Individual Ear Acoustics: Database and Target Response Correction Functions for Various Device Styles. Trends in Hearing, 2018, 22, 233121651877931.	1.3	18

#	Article	IF	CITATIONS
37	Modeling within- and across-channel processes in comodulation masking release. Journal of the Acoustical Society of America, 2013, 133, 350-364.	1.1	16
38	Prediction of consonant recognition in quiet for listeners with normal and impaired hearing using an auditory model. Journal of the Acoustical Society of America, 2014, 135, 1506-1517.	1.1	16
39	Binaural masking release in symmetric listening conditions with spectro-temporally modulated maskers. Journal of the Acoustical Society of America, 2017, 142, 12-28.	1.1	16
40	Perceptual Sensitivity to High-Frequency Interaural Time Differences Created by Rustling Sounds. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 131-143.	1.8	13
41	Comparing the effect of pause duration on threshold interaural time differences between exponential and squared-sine envelopes (L). Journal of the Acoustical Society of America, 2013, 133, 1-4.	1.1	13
42	Binaural Glimpses at the Cocktail Party?. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 461-473.	1.8	13
43	Removing Reflections in Semianechoic Impulse Responses by Frequency-Dependent Truncation. AES: Journal of the Audio Engineering Society, 2018, 66, 146-153.	1.0	13
44	The percept of reverberation is not affected by visual room impression in virtual environments. Journal of the Acoustical Society of America, 2019, 145, EL229-EL235.	1.1	13
45	Sound Quality Assessment Using Auditory Models. AES: Journal of the Audio Engineering Society, 2014, 62, 324-336.	1.0	12
46	Perceptual interaction between carrier periodicity and amplitude modulation in broadband stimuli: A comparison of the autocorrelation and modulation-filterbank model. Journal of the Acoustical Society of America, 2005, 118, 2470-2481.	1.1	11
47	Auditory Model-Based Dynamic Compression Controlled by Subband Instantaneous Frequency and Speech Presence Probability Estimates. IEEE/ACM Transactions on Audio Speech and Language Processing, 2016, 24, 1759-1772.	5. 8	11
48	Prediction of individual speech recognition performance in complex listening conditions. Journal of the Acoustical Society of America, 2020, 147, 1379-1391.	1.1	11
49	The effect of room acoustical parameters on speech reception thresholds and spatial release from masking. Journal of the Acoustical Society of America, 2019, 146, 2188-2200.	1.1	10
50	Estimates of auditory filter phase response at and below characteristic frequency (L). Journal of the Acoustical Society of America, 2005, 117, 1713-1716.	1.1	9
51	Lateralization based on interaural differences in the second-order amplitude modulator. Journal of the Acoustical Society of America, 2012, 131, 398-408.	1.1	9
52	Assessment and Prediction of Binaural Aspects of Audio Quality. AES: Journal of the Audio Engineering Society, 2017, 65, 929-942.	1.0	9
53	Spectral directional cues captured by hearing device microphones in individual human ears. Journal of the Acoustical Society of America, 2018, 144, 2072-2087.	1.1	9
54	Robust auditory localization using probabilistic inference and coherence-based weighting of interaural cues. Journal of the Acoustical Society of America, 2015, 138, 2635-2648.	1.1	8

#	Article	IF	CITATIONS
55	Physiological motivated transmission-lines as front end for loudness models. Journal of the Acoustical Society of America, 2016, 139, 2896-2910.	1.1	8
56	Physiologically motivated individual loudness model for normal hearing and hearing impaired listeners. Journal of the Acoustical Society of America, 2018, 144, 917-930.	1,1	8
57	Single channel noise reduction based on an auditory filterbank. , 2014, , .		6
58	The role of early and late reflections on perception of source orientation. Journal of the Acoustical Society of America, 2021, 149, 2255-2269.	1.1	6
59	Spatial Resolution of Late Reverberation in Virtual Acoustic Environments. Trends in Hearing, 2021, 25, 233121652110549.	1.3	6
60	Application of psychophysical models for audibility prediction of technical signals in real-world background noise. Applied Acoustics, 2015, 88, 44-51.	3.3	5
61	Evaluation of combined dynamic compression and single channel noise reduction for hearing aid applications. International Journal of Audiology, 2018, 57, S43-S54.	1.7	5
62	Loudness summation of equal loud narrowband signals in normal-hearing and hearing-impaired listeners. International Journal of Audiology, 2018, 57, S71-S80.	1.7	4
63	Instrumental Quality Predictions and Analysis of Auditory Cues for Algorithms in Modern Headphone Technology. Trends in Hearing, 2021, 25, 233121652110012.	1.3	4
64	The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise. PLoS ONE, 2016, 11, e0145610.	2.5	4
65	Lower interaural coherence in off-signal bands impairs binaural detection. Journal of the Acoustical Society of America, 2022, 151, 3927-3936.	1.1	4
66	Defining the Proper Stimulus and Its Ecology - Mammals. , 2020, , 187-206.		3
67	Tone detection thresholds in interaurally delayed noise of different bandwidths. Acta Acustica, 2021, 5, 60.	1.0	3
68	Computationally Efficient Spatial Rendering of Late Reverberation in Virtual Acoustic Environments. , 2021, , .		2
69	Comparison of level discrimination, increment detection, and comodulation masking release in the audio- and envelope-frequency domains. Journal of the Acoustical Society of America, 2007, 121, 2168-2181.	1.1	1
70	Effect of sound level on virtual and free-field localization of brief sounds in the anterior median plane. Hearing Research, 2018, 365, 28-35.	2.0	1
71	Modelling human speech recognition in challenging noise maskers using machine learning. Acoustical Science and Technology, 2020, 41, 94-98.	0.5	1
72	Toward an Individual Binaural Loudness Model for Hearing Aid Fitting and Development. Frontiers in Psychology, 2021, 12, 634943.	2.1	1

#	Article	lF	CITATIONS
73	Towards a simplified and generalized monaural and binaural auditory model for psychoacoustics and speech intelligibility. Acta Acustica, 2022, 6, 23.	1.0	1
74	Speech Intelligibility of Mandarin- and German-Speaking Listeners in Challenging Conditions., 2021,,.		0