
## Tao G Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3182563/publications.pdf Version: 2024-02-01



TAO C DONC

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A lightweight, mechanically strong, and shapeable copper-benzenedicarboxylate/cellulose aerogel for<br>dye degradation and antibacterial applications. Separation and Purification Technology, 2022, 283,<br>120229.                  | 7.9  | 25        |
| 2  | Delivery of an Rhsâ€family nuclease effector reveals direct penetration of the gramâ€positive cell<br>envelope by a type VI secretion system in <i>Acidovorax citrulli</i> . , 2022, 1, 66-78.                                        |      | 21        |
| 3  | Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in <i>Vibrio cholerae</i> . ISME Journal, 2022, 16, 1765-1775.                                                                   | 9.8  | 13        |
| 4  | Characterization of Lysozyme-Like Effector TseP Reveals the Dependence of Type VI Secretion System<br>(T6SS) Secretion on Effectors in Aeromonas dhakensis Strain SSU. Applied and Environmental<br>Microbiology, 2021, 87, e0043521. | 3.1  | 11        |
| 5  | Sensing of intracellular Hcp levels controls T6SS expression in <i>Vibrio cholerae</i> . Proceedings of the United States of America, 2021, 118, .                                                                                    | 7.1  | 19        |
| 6  | Essential functions of chaperones and adaptors of protein secretion systems in Gramâ€negative bacteria. FEBS Journal, 2021, , .                                                                                                       | 4.7  | 17        |
| 7  | Engineered Type Six Secretion Systems Deliver Active Exogenous Effectors and Cre Recombinase. MBio, 2021, 12, e0111521.                                                                                                               | 4.1  | 17        |
| 8  | Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nature Communications, 2021, 12, 423.                                                                                                   | 12.8 | 42        |
| 9  | VgrG-dependent effectors and chaperones modulate the assembly of the type VI secretion system. PLoS<br>Pathogens, 2021, 17, e1010116.                                                                                                 | 4.7  | 21        |
| 10 | More Than Just a Spearhead: Diverse Functions of PAAR for Assembly and Delivery of Toxins of the Contractile Injection Systems. MSystems, 2021, 6, e0138621.                                                                          | 3.8  | 12        |
| 11 | Identification of Small Molecule Inhibitors of the Pathogen Box against Vibrio cholerae.<br>Microbiology Spectrum, 2021, 9, e0073921.                                                                                                 | 3.0  | 5         |
| 12 | Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Reports, 2020, 33, 108259.                                                                                                                               | 6.4  | 37        |
| 13 | TssA–TssM–TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae. Nature Communications, 2020, 11, 5065.                                                                                         | 12.8 | 21        |
| 14 | Characterization of water treatment-resistant and multidrug-resistant urinary pathogenic<br>Escherichia coli in treated wastewater. Water Research, 2020, 182, 115827.                                                                | 11.3 | 31        |
| 15 | Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI<br>Secretion System. Cell Reports, 2020, 31, 107766.                                                                           | 6.4  | 51        |
| 16 | Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nature Microbiology, 2020, 5, 706-714.                                                                                 | 13.3 | 96        |
| 17 | A Comprehensive Account of Escherichia coli Sequence Type 131 in Wastewater Reveals an Abundance of Fluoroquinolone-Resistant Clade A Strains. Applied and Environmental Microbiology, 2020, 86, .                                    | 3.1  | 11        |
| 18 | Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system.<br>Nature Communications, 2020, 11, 1865.                                                                                         | 12.8 | 46        |

TAO G DONG

| #  | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | An onboard checking mechanism ensures effector delivery of the type VI secretion system in <i>Vibrio cholerae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23292-23298.                  | 7.1  | 45        |
| 20 | Double Tubular Contractile Structure of the Type VI Secretion System Displays Striking Flexibility and Elasticity. Journal of Bacteriology, 2019, 202, .                                                                                      | 2.2  | 8         |
| 21 | A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone–co-chaperone complex. Nature Microbiology, 2018, 3, 632-640.                                                                                         | 13.3 | 116       |
| 22 | "RETRACTED ARTICLE: Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nature Communications, 2018, 9, 3899.                                                                          | 12.8 | 8         |
| 23 | Manganese scavenging and oxidative stress response mediated by type VI secretion system in<br><i>Burkholderia thailandensis</i> . Proceedings of the National Academy of Sciences of the United<br>States of America, 2017, 114, E2233-E2242. | 7.1  | 185       |
| 24 | The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Reports, 2017, 20, 949-959.                                                                                                | 6.4  | 107       |
| 25 | <i>Vibrio cholerae</i> type 6 secretion system effector trafficking in target bacterial cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9427-9432.                                      | 7.1  | 61        |
| 26 | Microbial Herd Protection Mediated by Antagonistic Interaction in Polymicrobial Communities.<br>Applied and Environmental Microbiology, 2016, 82, 6881-6888.                                                                                  | 3.1  | 42        |
| 27 | Commentary: The icmF3 Locus is Involved in Multiple Adaptation- and Virulence-related Characteristics in Pseudomonas aeruginosa PAO1. Frontiers in Cellular and Infection Microbiology, 2015, 5, 83.                                          | 3.9  | 10        |
| 28 | Generation of reactive oxygen species by lethal attacks from competing microbes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2181-2186.                                                       | 7.1  | 131       |
| 29 | Identification of divergent type VI secretion effectors using a conserved chaperone domain.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9106-9111.                                         | 7.1  | 146       |
| 30 | Secretome Analysis of Vibrio cholerae Type VI Secretion System Reveals a New Effector-Immunity Pair.<br>MBio, 2015, 6, e00075.                                                                                                                | 4.1  | 96        |
| 31 | A View to a Kill: The Bacterial Type VI Secretion System. Cell Host and Microbe, 2014, 15, 9-21.                                                                                                                                              | 11.0 | 523       |
| 32 | Identification of T6SS-dependent effector and immunity proteins by Tn-seq in <i>Vibrio cholerae</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2623-2628.                               | 7.1  | 260       |
| 33 | Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Research, 2012, 40, 7766-7775.                                                        | 14.5 | 101       |
| 34 | Phenotypic Diversity Caused by Differential RpoS Activity among Environmental Escherichia coli<br>Isolates. Applied and Environmental Microbiology, 2011, 77, 7915-7923.                                                                      | 3.1  | 55        |
| 35 | Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in <i>Escherichia coli</i> . Molecular Microbiology, 2011, 79, 375-386.                                                                                     | 2.5  | 85        |
| 36 | Role of RpoS in Virulence of Pathogens. Infection and Immunity, 2010, 78, 887-897.                                                                                                                                                            | 2.2  | 186       |

TAO G DONG

| #  | Article                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of RpoS in the Virulence of <i>Citrobacter rodentium</i> . Infection and Immunity, 2009, 77, 501-507.                                    | 2.2 | 24        |
| 38 | Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC<br>Genomics, 2009, 10, 349.                | 2.8 | 134       |
| 39 | Polymorphism and selection of rpoS in pathogenic Escherichia coli. BMC Microbiology, 2009, 9, 118.                                            | 3.3 | 46        |
| 40 | Control of RpoS in global gene expression of Escherichia coli in minimal media. Molecular Genetics and Genomics, 2009, 281, 19-33.            | 2.1 | 105       |
| 41 | RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Molecular<br>Genetics and Genomics, 2008, 279, 267-277. | 2.1 | 100       |
| 42 | The Role of RpoS in Bacterial Adaptation. , 2008, , 313-337.                                                                                  |     | 13        |
| 43 | Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli. BMC<br>Microbiology, 2006, 6, 14.                 | 3.3 | 16        |