Scott M Landfear

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3182273/publications.pdf

Version: 2024-02-01

81 papers 4,441 citations

31 h-index

147801

65 g-index

84 all docs

84 docs citations

84 times ranked 4279 citing authors

#	Article	IF	CITATIONS
1	New Vistas in the Biology of the Flagellum—Leishmania Parasites. Pathogens, 2022, 11, 447.	2.8	3
2	Amino-Substituted 3-Aryl- and 3-Heteroarylquinolines as Potential Antileishmanial Agents. Journal of Medicinal Chemistry, 2021, 64, 12152-12162.	6.4	5
3	Nutrient sensing in Leishmania : Flagellum and cytosol. Molecular Microbiology, 2020, 115, 849-859.	2.5	17
4	A cytoskeletal protein complex is essential for division of intracellular amastigotes of Leishmania mexicana. Journal of Biological Chemistry, 2020, 295, 13106-13122.	3.4	9
5	Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	20
6	Vaccinia Virus Vectors Targeting Peptides for MHC Class II Presentation to CD4+ T Cells. ImmunoHorizons, 2020, 4, 1-13.	1.8	3
7	Sensing What's Out There – Kinetoplastid Parasites. Trends in Parasitology, 2019, 35, 274-277.	3.3	17
8	Protean permeases: Diverse roles for membrane transport proteins in kinetoplastid protozoa. Molecular and Biochemical Parasitology, 2019, 227, 39-46.	1.1	5
9	<i>Leishmania mexicana</i> can utilize amino acids as major carbon sources in macrophages but not in animal models. Molecular Microbiology, 2018, 108, 143-158.	2.5	31
10	Functional Analysis of Leishmania Membrane (Non-ABC) Transporters Involved in Drug Resistance. , 2018, , 273-294.		0
11	Glucose Transporters and Virulence in Leishmania mexicana. MSphere, 2018, 3, .	2.9	9
12	Discovery of novel, orally bioavailable, antileishmanial compounds using phenotypic screening. PLoS Neglected Tropical Diseases, 2017, 11, e0006157.	3.0	23
13	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
14	KHARON Is an Essential Cytoskeletal Protein Involved in the Trafficking of Flagellar Membrane Proteins and Cell Division in African Trypanosomes. Journal of Biological Chemistry, 2016, 291, 19760-19773.	3.4	15
15	Targeting the Cytochrome <i>bc</i> ₁ Complex of Leishmania Parasites for Discovery of Novel Drugs. Antimicrobial Agents and Chemotherapy, 2016, 60, 4972-4982.	3.2	28
16	Flagellar membrane proteins in kinetoplastid parasites. IUBMB Life, 2015, 67, 668-676.	3.4	13
17	Coxiella burnetii and Leishmania mexicana residing within similar parasitophorous vacuoles elicit disparate host responses. Frontiers in Microbiology, 2015, 6, 794.	3.5	7
18	Identification of Selective Inhibitors of the Plasmodium falciparum Hexose Transporter PfHT by Screening Focused Libraries of Anti-Malarial Compounds. PLoS ONE, 2015, 10, e0123598.	2.5	23

#	Article	IF	CITATIONS
19	Kharon1 Null Mutants of Leishmania mexicana Are Avirulent in Mice and Exhibit a Cytokinesis Defect within Macrophages. PLoS ONE, 2015, 10, e0134432.	2.5	13
20	Regulation and biological function of a flagellar glucose transporter in <i>Leishmania mexicana:</i> potential glucose sensor. FASEB Journal, 2015, 29, 11-24.	0.5	38
21	Jatropha Natural Products as Potential Therapeutic Leads. , 2015, , 77-98.		3
22	Transporters, channels and receptors in flagella. Channels, 2014, 8, 477-478.	2.8	4
23	Identification of the Intracellular Gate for a Member of the Equilibrative Nucleoside Transporter (ENT) Family. Journal of Biological Chemistry, 2014, 289, 8799-8809.	3.4	29
24	Functional Analysis of Leishmania Membrane (Non-ABC) Transporters Involved in Drug Resistance. , 2013, , 259-284.		1
25	†Transient' genetic suppression facilitates generation of hexose transporter null mutants in <i><scp>L</scp>eishmania mexicana</i> Molecular Microbiology, 2013, 87, 412-429.	2.5	9
26	KHARON1 Mediates Flagellar Targeting of a Glucose Transporter in Leishmania mexicana and Is Critical for Viability of Infectious Intracellular Amastigotes. Journal of Biological Chemistry, 2013, 288, 22721-22733.	3.4	24
27	Both sequence and context are important for flagellar targeting of a glucose transporter. Journal of Cell Science, 2012, 125, 3293-8.	2.0	16
28	Cysteine Cross-linking Defines the Extracellular Gate for the Leishmania donovani Nucleoside Transporter 1.1 (LdNT1.1). Journal of Biological Chemistry, 2012, 287, 44036-44045.	3.4	11
29	Nutrient Transport and Pathogenesis in Selected Parasitic Protozoa. Eukaryotic Cell, 2011, 10, 483-493.	3.4	63
30	Remodeling of protein and mRNA expression in Leishmania mexicana induced by deletion of glucose transporter genes. Molecular and Biochemical Parasitology, 2011, 175, 39-48.	1.1	8
31	Lysosomal degradation of Leishmania hexose and inositol transporters is regulated in a stage-, nutrient- and ubiquitin-dependent manner. International Journal for Parasitology, 2011, 41, 791-800.	3.1	13
32	A constitutive panâ€hexose permease for the <i>Plasmodium</i> life cycle and transgenic models for screening of antimalarial sugar analogs. FASEB Journal, 2011, 25, 1218-1229.	0.5	41
33	Purine restriction induces pronounced translational upregulation of the NT1 adenosine/pyrimidine nucleoside transporter in <i>Leishmania major</i> Molecular Microbiology, 2010, 78, 108-118.	2.5	18
34	Adaptive responses to purine starvation in <i>Leishmania donovani</i> . Molecular Microbiology, 2010, 78, 92-107.	2.5	49
35	Glucose Transporters in Parasitic Protozoa. Methods in Molecular Biology, 2010, 637, 245-262.	0.9	13
36	An ab Initio Structural Model of a Nucleoside Permease Predicts Functionally Important Residues. Journal of Biological Chemistry, 2009, 284, 19067-19076.	3.4	23

#	Article	IF	Citations
37	Host-derived glucose and its transporter in the obligate intracellular pathogen <i>Toxoplasma gondii</i> are dispensable by glutaminolysis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12998-13003.	7.1	121
38	An Acid-activated Nucleobase Transporter from Leishmania major. Journal of Biological Chemistry, 2009, 284, 16164-16169.	3.4	32
39	Two novel nucleobase/pentamidine transporters from Trypanosoma brucei. Molecular and Biochemical Parasitology, 2009, 163, 67-76.	1.1	26
40	Arsenic transport by zebrafish aquaglyceroporins. BMC Molecular Biology, 2009, 10, 104.	3.0	84
41	Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in <i>Leishmania mexicana</i> . Molecular Microbiology, 2009, 71, 369-381.	2.5	20
42	An expression system to screen for inhibitors of parasite glucose transporters. Molecular and Biochemical Parasitology, 2008, 162, 71-76.	1.1	15
43	Drugs and Transporters in Kinetoplastid Protozoa. Advances in Experimental Medicine and Biology, 2008, 625, 22-32.	1.6	29
44	Down-Regulation of the Trypanosomatid Signal Recognition Particle Affects the Biogenesis of Polytopic Membrane Proteins but Not of Signal Peptide-Containing Proteins. Eukaryotic Cell, 2007, 6, 1865-1875.	3.4	16
45	Molecular genetic analysis of purine nucleobase transport in Leishmania major. Molecular Microbiology, 2007, 64, 1228-1243.	2.5	40
46	Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Molecular and Biochemical Parasitology, 2007, 153, 9-18.	1.1	41
47	Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochemical and Biophysical Research Communications, 2006, 351, 424-430.	2.1	117
48	Comprehensive Examination of Charged Intramembrane Residues in a Nucleoside Transporter. Journal of Biological Chemistry, 2006, 281, 22647-22655.	3 . 4	23
49	Metabolic Changes in Glucose Transporter-deficient Leishmania mexicana and Parasite Virulence. Journal of Biological Chemistry, 2006, 281, 20068-20076.	3.4	45
50	The Genome of the African Trypanosome Trypanosoma brucei. Science, 2005, 309, 416-422.	12.6	1,496
51	Nucleoside and Nucleobase Transporters in Parasitic Protozoa. Eukaryotic Cell, 2004, 3, 245-254.	3.4	104
52	Sequences required for the flagellar targeting of an integral membrane protein. Molecular and Biochemical Parasitology, 2004, 135, 89-100.	1.1	28
53	A novel purine nucleoside transporter whose expression is up-regulated in the short stumpy form of the Trypanosoma brucei life cycle. Molecular and Biochemical Parasitology, 2004, 136, 265-272.	1.1	25
54	Transmembrane Domain 5 of the LdNT1.1 Nucleoside Transporter Is an Amphipathic Helix That Forms Part of the Nucleoside Translocation Pathwayâ€. Biochemistry, 2004, 43, 6793-6802.	2.5	37

#	Article	IF	CITATIONS
55	A novel purine nucleoside transporter whose expression is up-regulated in the short stumpy form of the Trypanosoma brucei life cycle. Molecular and Biochemical Parasitology, 2004, 136, 265-265.	1.1	2
56	Functional expression and characterization of a purine nucleobase transporter gene from Leishmania major. Molecular Membrane Biology, 2004, 21, 11-18.	2.0	41
57	Molecular and functional characterization of the first nucleobase transporter gene from African trypanosomes. Molecular and Biochemical Parasitology, 2003, 130, 101-110.	1.1	32
58	Genetic characterization of glucose transporter function in Leishmania mexicana. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3901-3906.	7.1	124
59	The Adenosine Analog Tubercidin Inhibits Glycolysis in Trypanosoma brucei as Revealed by an RNA Interference Library. Journal of Biological Chemistry, 2003, 278, 46596-46600.	3.4	68
60	Equilibrative Nucleoside Transporter Family Members from Leishmania donovani Are Electrogenic Proton Symporters. Journal of Biological Chemistry, 2003, 278, 35127-35134.	3.4	46
61	Trypanosomatid transcription factors: Waiting for Godot. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7-9.	7.1	11
62	Six Related Nucleoside/Nucleobase Transporters from Trypanosoma brucei Exhibit Distinct Biochemical Functions. Journal of Biological Chemistry, 2002, 277, 21499-21504.	3.4	56
63	Membrane Transport and Metabolism in Leishmania Parasites. World Class Parasites, 2002, , 75-87.	0.3	0
64	The flagellum and flagellar pocket of trypanosomatids. Molecular and Biochemical Parasitology, 2001, 115, 1-17.	1.1	122
65	Molecular genetics of nucleoside transporters in Leishmania and African trypanosomes. Biochemical Pharmacology, 2001, 62, 149-155.	4.4	34
66	Nucleoside transporters of parasitic protozoa. Trends in Parasitology, 2001, 17, 142-145.	3.3	62
67	Cloning of a Novel Inosine-Guanosine Transporter Gene fromLeishmania donovani by Functional Rescue of a Transport-deficient Mutant. Journal of Biological Chemistry, 2000, 275, 20935-20941.	3.4	80
68	Isolation and Functional Characterization of the PfNT1 Nucleoside Transporter Gene from Plasmodium falciparum. Journal of Biological Chemistry, 2000, 275, 10683-10691.	3.4	119
69	Four Conserved Cytoplasmic Sequence Motifs Are Important for Transport Function of the Leishmanialnositol/H+ Symporter. Journal of Biological Chemistry, 2000, 275, 5687-5693.	3.4	31
69 70		3.4 5.1	31
	Leishmanialnositol/H+ Symporter. Journal of Biological Chemistry, 2000, 275, 5687-5693. Genetics and biochemistry of Leishmania membrane transporters. Current Opinion in Microbiology,		

#	Article	IF	CITATION
73	Substrate depletion upregulates uptake of myo-inositol, glucose and adenosine in Leishmania. Molecular and Biochemical Parasitology, 1999, 104, 121-130.	1.1	28
74	Differential Regulation of Multiple Glucose Transporter Genes in Leishmania mexicana. Journal of Biological Chemistry, 1998, 273, 29118-29126.	3.4	81
75	Aspartate 19 and Glutamate 121 Are Critical for Transport Function of the myo-Inositol/H+ Symporter fromLeishmania donovani. Journal of Biological Chemistry, 1997, 272, 24210-24215.	3.4	37
76	Cytoskeletal Association Is Important for Differential Targeting of Glucose Transporter Isoforms in Leishmania. Journal of Cell Biology, 1997, 139, 1775-1783.	5.2	44
77	Kinetics and Stoichiometry of a Proton/-lnositol Cotransporter. Journal of Biological Chemistry, 1996, 271, 14937-14943.	3.4	37
78	Functional expression and subcellular localization of a high-Km hexose transporter from Leishmania donovani. Biochemistry, 1995, 34, 11814-11821.	2.5	19
79	A Family of Putative Receptor-Adenylate Cyclases from Leishmania donovani. Journal of Biological Chemistry, 1995, 270, 17551-17558.	3.4	68
80	Molecular characterization of two genes encoding members of the glucose transporter superfamily in the parasitic protozoan Leishmania donovani. Molecular and Biochemical Parasitology, 1992, 55, 51-64.	1.1	44
81	Developmentally regulated transporter inLeishmaniais encoded by a family of clustered genes. Nucleic Acids Research, 1990, 18, 1549-1557.	14.5	27