
Vadim R Galakhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3181848/publications.pdf Version: 2024-02-01

VADIM R CALAKHOV

#	Article	IF	CITATIONS
1	Valence-band spectra and electronic structure of CuFeO2. Physical Review B, 1997, 56, 4584-4591.	3.2	105
2	Photoemission study of the metal-insulator transition inCulr2S4. Physical Review B, 1997, 55, R15979-R15982.	3.2	88
3	Degree of covalency of LiCoO2: X-ray emission and photoelectron study. Solid State Communications, 1996, 99, 221-224.	1.9	63
4	Valence Band Structure and X-ray Spectra of Oxygen-Deficient Ferrites SrFeO _{<i>x</i>} . Journal of Physical Chemistry C, 2010, 114, 5154-5159.	3.1	59
5	Electronic structure, x-ray spectra, and magnetic properties of the LiCoO2â [~] δ and NaxCoO2 nonstoichiometric oxides. Physics of the Solid State, 2002, 44, 266-273.	0.6	51
6	Characterization of Carbon-Encapsulated Nickel and Iron Nanoparticles by Means of X-ray Absorption and Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 22413-22416.	3.1	51
7	Valence states of copper ions and electronic structure ofLiCu2O2. Physical Review B, 1998, 57, 4377-4381.	3.2	48
8	Electronic structure of LiNiO2, LiFeO2 and LiCrO2: X-ray photoelectron and X-ray emission study. Solid State Communications, 1995, 95, 347-351.	1.9	40
9	Analysis of oxyanion (BO 3 3? , CO 3 2? , SO 4 2? , PO 4 3? , SeO 4 4-) substitution in Y123 compounds studied by X-ray photoelectron spectroscopy. Journal of Superconductivity and Novel Magnetism, 1996, 9, 97-100.	0.5	39
10	Studies of Solid Interfaces Using Soft X-ray Emission Spectroscopy. Critical Reviews in Solid State and Materials Sciences, 1998, 23, 65-203.	12.3	33
11	Electronic structure ofCuV2S4. Physical Review B, 1996, 53, 9626-9633.	3.2	28
12	Carbon States in Carbon-Encapsulated Nickel Nanoparticles Studied by Means of X-ray Absorption, Emission, and Photoelectron Spectroscopies. Journal of Physical Chemistry C, 2011, 115, 24615-24620.	3.1	27
13	Electronic valence band structure of high-Tc superconductors. Physica C: Superconductivity and Its Applications, 1991, 177, 8-16.	1.2	26
14	X-ray emission and photoelectron spectra ofPr0.5Sr0.5MnO3. Physical Review B, 1999, 59, 12799-12806.	3.2	24
15	Electronic structure of LiMnO : X-ray emission and photoelectron spectra and band structure calculations. European Physical Journal B, 2000, 14, 281-286.	1.5	23
16	Soft X-ray emission CuL spectra and copper-oxygen bond covalency in high-Tc superconductors. Solid State Communications, 1992, 81, 1003-1007.	1.9	22
17	Analysis of fluorine incorporation into YBa2Cu3O6.5+δ by means of X-ray emission spectroscopy. Physica C: Superconductivity and Its Applications, 1994, 221, 71-75.	1.2	20
18	X-ray emission, photoelectron spectra, and electronic structure ofSr2CuO2F2+δ. Physical Review B, 1995, 52, 2390-2394.	3.2	20

#	Article	IF	CITATIONS
19	Valence states of iron ions in nanostructured yttrium iron garnet Y3Fe5O12 studied by means of soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 598-601.	1.7	19
20	X-ray emission spectra and electronic structure of Culr2S4 and Culr2Se4. Solid State Communications, 1998, 108, 235-239.	1.9	17
21	Effect of atomic magnetic moments on the relative intensity of the L \hat{I}^2 and L $\hat{I}\pm$ components in x-ray emission spectra of 3d transition metal oxides. Physics of the Solid State, 2003, 45, 1048-1055.	0.6	17
22	X-ray emission spectra and valence band structure of the 3d transition metal oxides. Physica B: Condensed Matter, 1991, 168, 163-169.	2.7	16
23	Electronic structure and valence-band spectra ofBi4Ti3O12. Physical Review B, 1995, 52, 11805-11812.	3.2	15
24	Interaction of Cu3dand O2pstates inMg1â^'xCuxOsolid solutions with NaCl structure: X-ray photoelectron and x-ray emission study. Physical Review B, 2000, 62, 4922-4926.	3.2	15
25	Analysis of the depth profile of Fe-Si buried layers in Fe+-implanted Si wafer by soft X-ray emission spectroscopy. Applied Surface Science, 1993, 72, 73-77.	6.1	14
26	Soft-x-ray-emission study of the influence ofLi+-doping, irradiation, and plastic deformation on CuO. Physical Review B, 1999, 59, 211-214.	3.2	14
27	Electronic structure of FeCr2S4and Fe0.5Cu0.5Cr2S4. Journal of Physics Condensed Matter, 2000, 12, 5411-5421.	1.8	14
28	X-ray spectra and electronic structure of high-Tc superconductors La1.83Sr0.17CuO4 and Bi4Ca3Sr3O16. Physica C: Superconductivity and Its Applications, 1989, 160, 267-272.	1.2	13
29	Effects of Ce and F doping and reduction on the electronic structure ofNd2â°'xCexCuO4andNd2CuO3.6F0.4as determined by x-ray-emission spectroscopy. Physical Review B, 1993, 47, 9035-9041.	3.2	13
30	Electronic structure of FeSi. Journal of Physics Condensed Matter, 1995, 7, 5529-5535.	1.8	13
31	X-ray emission spectroscopic studies of silicon precipitation in surface layer of SiO2 induced by argon excimer laser irradiation. Applied Surface Science, 1998, 126, 83-91.	6.1	13
32	X-ray spectroscopy of lanthanum manganites: Nature of doping holes, correlation effects, and orbital ordering. Journal of Structural Chemistry, 2008, 49, 54-58.	1.0	13
33	Electronic structure of defective lithium cobaltites Li x CoO2. Applied Physics A: Materials Science and Processing, 2009, 94, 497-500.	2.3	13
34	Application of high energy resolved X-ray emission spectroscopy for monitoring of silicide formation in Co/SiO2/Si system. Thin Solid Films, 1997, 311, 28-32.	1.8	12
35	Application of soft x-ray emission spectroscopy for the study of solid-phase reactions in Si-based interfaces. X-Ray Spectrometry, 2002, 31, 203-208.	1.4	12
36	Structure and Surface States of Cu-O Based Nanocrystalline Powders. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 43-48.	0.1	12

VADIM R GALAKHOV

#	Article	IF	CITATIONS
37	Soft x-ray emission spectra and ferromagnetism in wide-gap doped semiconductors. Low Temperature Physics, 2009, 35, 79-82.	0.6	12
38	Electronic structure and resonant X-ray emission spectra of carbon shells of iron nanoparticles. JETP Letters, 2013, 96, 710-713.	1.4	11
39	Characterization of W/Si multilayers by ultrasoft x-ray emission spectroscopy. Journal of Materials Research, 1995, 10, 907-911.	2.6	10
40	The influence of high-energy electron irradiation and boron implantation on the oxide thickness in the /Si system. Journal of Physics Condensed Matter, 1997, 9, 6969-6978.	1.8	10
41	Ion-implantation effects in Al2O3: X-ray fluorescence measurements. Nuclear Instruments & Methods in Physics Research B, 2000, 168, 395-398.	1.4	10
42	Electron correlation effects in band structure of magnetic clusters Mn12 and Fe8. Journal of Electron Spectroscopy and Related Phenomena, 2004, 137-140, 735-739.	1.7	10
43	Photon energy dependent photoemission study of La0.7Sr0.3MnO3. Surface Science, 2005, 575, 29-34.	1.9	10
44	Charge state of manganese ions and the nonstoichiometry of Ca1 â^' x La y MnO3 â^' δ single crystals. JETP Letters, 2010, 91, 129-133.	1.4	9
45	Magnetic and Electronic Properties of Highly Mn-Doped β-NaGdF ₄ and β-NaEuF ₄ Nanoparticles with a Narrow Size Distribution. Journal of Physical Chemistry C, 2020, 124, 18194-18202.	3.1	9
46	X-ray emission spectra and electronic structure of 3d impurities in Cu alloys. Journal of Physics F: Metal Physics, 1985, 15, 2041-2051.	1.6	8
47	The ground state of the antiferromagnetic semiconductor YBa2Cu3O6: electronic structure calculations and analysis of X-ray spectra. Materials Letters, 1990, 10, 34-38.	2.6	7
48	Soft X-ray emission study of YBa2Cu4O8. Solid State Communications, 1992, 84, 995-997.	1.9	7
49	Excitation energy dependence of X-ray emission spectra and electronic structure of Eu1â^'xCaxMnO3. Journal of Electron Spectroscopy and Related Phenomena, 1998, 96, 187-194.	1.7	7
50	Effect of nonstoichiometry on crystal structure, charge and spin states of cobalt ions in Tb1â^'Ba1+Co2â 'O5.5â^': Neutron diffraction and soft X-ray absorption spectroscopy studies. Journal of Alloys and Compounds, 2020, 817, 152775.	5.5	7
51	Electronic Structure of Doped La-Mn-O Perovskites. Acta Physica Polonica A, 2000, 98, 587-591.	O.5	7
52	X-ray emission spectra and interfacial solid-phase reactions in Hf/(001)Si system. Thin Solid Films, 1999, 350, 143-146.	1.8	6
53	Electronic structure of the mixed-valent system V2â^'Mo O5. Surface Science, 2001, 482-485, 708-711.	1.9	6
54	Electronic structure of cobalt-doped manganites. Surface Science, 2003, 532-535, 488-492.	1.9	6

#	Article	IF	CITATIONS
55	X-ray spectra and valence states of cations in nanostructured half-doped \$\$hbox {La}_{0.5}hbox {Ca}_{0.5}hbox {MnO}_{3}\$\$ La 0.5 Ca 0.5 MnO 3 manganite. Applied Physics A: Materials Science and Processing, 2015, 118, 649-654.	2.3	6
56	X-ray emission spectra and electronic structure of Mn impurities in diluted Al, Ni and Cu-based solid solutions. Solid State Communications, 1986, 58, 143-146.	1.9	5
57	Transition metal impurities and band offsets in wide gap Il–VI semiconductors: Zn1â^'xMnxSe(Ni) compounds. Solid State Communications, 1994, 91, 279-282.	1.9	5
58	Solid-phase reactions in Ir/(111)Si systems studied by means of x-ray emission spectroscopy. Journal of Materials Research, 1998, 13, 1950-1955.	2.6	5
59	Magnetic and soft X-ray absorption spectroscopy characterization of Mn and Co doped lithium nickel phosphate LiNiPO ₄ . Physica Status Solidi (B): Basic Research, 2017, 254, 1600264.	1.5	5
60	Effect of transition metal oxidation state on crystal structure and magnetic ordering in frustrated A BaM 4 O 7 systems (A= Y, Ca; M= Co, Fe): X-ray diffraction, soft X-ray absorption, and magnetization studies. Current Applied Physics, 2018, 18, 155-162.	2.4	5
61	Soft X-Ray Absorption Spectroscopy as a Method to Study Y1–yCayBaCo4–xMxO7 Cobaltites (M = Fe,) Tj	ETQq1 1 1.4	0.784314 rgET
62	An investigation of the effect of the nearest surroundings on the formation of V Lα emission bands for solid solutions of rare earth orthovanadates—orthophosphates. Journal of Electron Spectroscopy and Related Phenomena, 1985, 35, 87-99.	1.7	4
63	X-ray emission spectra and electronic structure of high-Tc superconductors and binary oxides. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68, 431-438.	1.7	4
64	X-ray emission spectra and the effect of oxidation on the local structure of porous and spark-processed silicon. Journal of Physics Condensed Matter, 1997, 9, 2671-2681.	1.8	4
65	Single-ion approach to the interpretation of the x-ray photoelectron spectra of the valence bands of monoxides of 3d elements. Physics of the Solid State, 1997, 39, 948-954.	0.6	4
66	Electronic structure of molecular superconductors containing paramagnetic3dions. Physical Review B, 2000, 62, 11380-11383.	3.2	4
67	Soft X-ray fluorescence and photoluminescence of Si nanocrystals embedded in SiO2. Applied Physics A: Materials Science and Processing, 2001, 72, 303-306.	2.3	4
68	X-ray emission spectra of vanadium atoms in a new series of (Cu,V)-based high-Tc superconductors. Journal of Solid State Chemistry, 2003, 170, 188-191.	2.9	4
69	Reinvestigation of the Fe, Cu and Cr valences in (FeCu)Cr ₂ S ₄ spinels. Physica Status Solidi (B): Basic Research, 2009, 246, 1470-1475.	1.5	4
70	Infrared and X-Ray Absorption Spectra of Cu ₂ O and CuO Nanoceramics. Solid State Phenomena, 0, 190, 683-686.	0.3	4
71	Effects of shock-wave loading in oxides. Petrology, 2012, 20, 317-330.	0.9	4
72	Magnetic Properties, Electron Paramagnetic Resonance, and Photoelectron Spectroscopy Studies of Nanocrystalline TiO ₂ Coâ€Đoped with Al and Fe. Physica Status Solidi (B): Basic Research, 2021, 258, 2000399.	1.5	4

VADIM R GALAKHOV

#	Article	IF	CITATIONS
73	Local structure of porous silicon studied by means of X-ray emission spectroscopy. Applied Physics A: Materials Science and Processing, 1997, 65, 183-189.	2.3	3
74	Electronic structure of ternary transition metal oxides and sulphides: X-ray photoelectron and X-ray emission spectroscopy study. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 441-447.	1.7	3
75	X-ray absorption spectroscopy and magnetic studies of Sr 1â^'x Ce x Mn 1â^'y Co y O 3â^î^´solid solutions. Current Applied Physics, 2016, 16, 1597-1602.	2.4	3
76	Soft X-ray absorption spectroscopy of titanium dioxide nanopowders with cobalt impurities. Journal of Experimental and Theoretical Physics, 2017, 124, 908-913.	0.9	3
77	Milling-induced chemical decomposition of the surface of EuBaCo2O5.5 powders studied by means of soft X-ray absorption spectroscopy. Applied Surface Science, 2019, 493, 1048-1054.	6.1	3
78	Oxygen-cation interactions in superconducting cuprates and related compounds. Solid State Communications, 1994, 90, 769-772.	1.9	2
79	Electronic structure of cuprates containing sulfur and phosphorus oxyanions. Physical Review B, 1995, 52, 11830-11836.	3.2	2
80	Optical spectra and electronic structure of CdFeTe mixed crystals. Journal of Crystal Growth, 1998, 184-185, 1128-1131.	1.5	2
81	X-ray emission and photoelectron spectra of Pr0.5Sr0.5MnO3. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 793-798.	1.7	2
82	Soft X-ray emission spectroscopy of SiO2/Si structures irradiated with high-energy electrons. Journal of Materials Science: Materials in Electronics, 2003, 14, 809-811.	2.2	2
83	X-ray emission and Raman spectroscopy of CNO â‰ऋ ≤0.5 nanocondensates prepared by pulsed arc sputtering of graphite in the presence of nitrogen. Physics of the Solid State, 2008, 50, 977-980.	0.6	2
84	Electronic Structure of ZnS:Co Semiconductors: X-ray and Optical Spectroscopy Studies. Acta Physica Polonica A, 2003, 103, 703-708.	0.5	2
85	X-ray emission spectra and electronic structure of TiS2. Journal of Structural Chemistry, 1984, 25, 35-41.	1.0	1
86	X-ray-emission study of the structure of Si:H layers formed by low-energy hydrogen-ion implantation. Semiconductors, 2002, 36, 568-573.	0.5	1
87	Application of 3s X-Ray Photoelectron Spectra for Determination of Charge States and Magnetic Moments of 3d Ions in Oxides. Solid State Phenomena, 0, 168-169, 453-456.	0.3	1
88	Electronic structure and nature of the color centers in MgF2. Journal of Structural Chemistry, 1986, 27, 235-238.	1.0	0
89	Electron structure and correlation effects in high-T c superconductors and transition metal oxides. Bulletin of Materials Science, 1991, 14, 1087-1091.	1.7	0
90	Soft-x-ray fluorescence study of the quasi-one-dimensional Heisenberg antiferromagnet tetraphenylverdazyl. Physical Review B, 2000, 62, 15660-15665.	3.2	0

#	Article	IF	CITATIONS
91	X-ray spectroscopy of carbon-encapsulated iron nanoparticles. Journal of Structural Chemistry, 2015, 56, 478-485.	1.0	0