Kyoko Nakagawa-Goto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3181814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-Mediated Mitochondrial Dysfunction Is Involved in the Anti-triple-Negative Breast Cancer Cell Activity of Phytosesquiterpene Lactones. Antioxidants and Redox Signaling, 2023, 38, 198-214.	5.4	1
2	Chemical Space Expansion of Flavonoids: Induction of Mitotic Inhibition by Replacing Ring B with a 10ï€-Electron System, Benzo[<i>b</i>]thiophene. Journal of Natural Products, 2022, 85, 136-147.	3.0	5
3	Phyto-sesquiterpene lactones DET and DETD-35 induce ferroptosis in vemurafenib sensitive and resistant melanoma via GPX4 inhibition and metabolic reprogramming. Pharmacological Research, 2022, 178, 106148.	7.1	16
4	Anti-proliferative and anti-migratory properties of coffee diterpenes kahweol acetate and cafestol in human renal cancer cells. Scientific Reports, 2021, 11, 675.	3.3	16
5	A new flavonoid derivative exerts antitumor effects against androgenâ€sensitive to cabazitaxelâ€resistant prostate cancer cells. Prostate, 2021, 81, 295-306.	2.3	7
6	Bicyclic Chalcones as Mitotic Inhibitors for Overcoming Androgen Receptor-Independent and Multidrug-Resistant Prostate Cancer. ACS Omega, 2021, 6, 4842-4849.	3.5	4
7	Sesquiterpene Lactone Deoxyelephantopin Isolated from Elephantopus scaber and Its Derivative DETD-35 Suppress BRAFV600E Mutant Melanoma Lung Metastasis in Mice. International Journal of Molecular Sciences, 2021, 22, 3226.	4.1	12
8	α-Trifluoromethyl Chalcones as Potent Anticancer Agents for Androgen Receptor-Independent Prostate Cancer. Molecules, 2021, 26, 2812.	3.8	5
9	Synthesis of Thio-lignan Analogues, Bioequivalent Salvinal without Unfavored Aldehyde. Journal of Organic Chemistry, 2021, 86, 7092-7106.	3.2	4
10	Boroxazolidone Formation under Physiological Conditions as a Tool for the Chemical Modification of Biomolecules. Chemistry Letters, 2021, 50, 1695-1698.	1.3	1
11	Effects of substituent pattern on the intracellular target of antiproliferative benzo[b]thiophenyl chromone derivatives. European Journal of Medicinal Chemistry, 2021, 222, 113578.	5.5	16
12	Novel seco-phenanthroquinolizidine alkaloids from Indonesian Boehmeria virgata. Phytochemistry Letters, 2021, 45, 132-136.	1.2	2
13	Tumor-Associated Macrophages Induce Migration of Renal Cell Carcinoma Cells via Activation of the CCL20-CCR6 Axis. Cancers, 2020, 12, 89.	3.7	33
14	Development of an Efficient Scale-Up Synthesis Method for a β ₃ -Adrenergic Receptor Agonist, Ritobegron Ethyl Hydrochloride. Organic Process Research and Development, 2020, 24, 1675-1682.	2.7	1
15	The anticancer activity of two glycosides from the leaves of Leea aequata L Natural Product Research, 2020, 35, 1-5.	1.8	7
16	Paliasanines A–E, 3,4-Methylenedioxyquinoline Alkaloids Fused with a Phenyl-14-oxabicyclo[3.2.1]octane Unit from <i>Melochia umbellata</i> var. <i>deglabrata</i> . Journal of Natural Products, 2020, 83, 2931-2939.	3.0	5
17	Reply to Comment on "Kadomoto, S. et al. Tumor-Associated Macrophages Induce Migration of Renal Cell Carcinoma Cells via Activation of the CCL20-CCR6 Axis―Cancers 2020 12, 89. Cancers, 2020, 12, 354.	3.7	2
18	Novel furoquinolinones from an Indonesian Plant, Lunasia amara. Tetrahedron Letters, 2020, 61, 151861.	1.4	1

#	Article	IF	CITATIONS
19	First Total Synthesis of the Pavine Alkaloid (±)-Neocaryachine and Its Optical Resolution. Chemical and Pharmaceutical Bulletin, 2020, 68, 899-902.	1.3	1
20	Spiro[3.5]nonenyl Meroterpenoid Lactones, Cryptolaevilactones G–L, an Ionone Derivative, and Total Synthesis of Cryptolaevilactone M from <i>Cryptocarya laevigata</i> . Journal of Natural Products, 2019, 82, 2368-2378.	3.0	9
21	Isolation, Structure Elucidation, and Antiproliferative Activity of Butanolides and Lignan Glycosides from the Fruit of Hernandia nymphaeifolia. Molecules, 2019, 24, 4005.	3.8	8
22	Prenylated Acetophloroglucinol Dimers from <i>Acronychia trifoliolata</i> : Structure Elucidation and Total Synthesis. Journal of Natural Products, 2019, 82, 2852-2858.	3.0	9
23	Antiproliferative and Chemosensitizing Effects of Diarylheptanoids on Intractable Tumor Cells. ACS Omega, 2019, 4, 2053-2062.	3.5	3
24	Synthesis of 4- <i>epi</i> -Parviflorons A, C, and E: Structure–Activity Relationship Study of Antiproliferative Abietane Derivatives. Journal of Organic Chemistry, 2019, 84, 3239-3248.	3.2	10
25	Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. Prostate, 2019, 79, 468-479.	2.3	29
26	Secondary Metabolites, Monoterpene–Polyketides Containing a Spiro[3.5]nonane from <i>Cryptocarya laevigata</i> . Organic Letters, 2018, 20, 2282-2286.	4.6	13
27	Total Synthesis of Antiproliferative Parvifloron F. Organic Letters, 2018, 20, 628-631.	4.6	11
28	Corymbulosins l–W, Cytotoxic Clerodane Diterpenes from the Bark of <i>Laetia corymbulosa</i> . Journal of Organic Chemistry, 2018, 83, 951-963.	3.2	12
29	5′-Chloro-2,2′-dihydroxychalcone and related flavanoids as treatments for prostate cancer. European Journal of Medicinal Chemistry, 2018, 157, 1143-1152.	5.5	14
30	Kleinhospitine E and Cycloartane Triterpenoids from <i>Kleinhovia hospita</i> . Journal of Natural Products, 2018, 81, 1619-1627.	3.0	17
31	Antiproliferative Alkaloids from Alangium longiflorum, an Endangered Tropical Plant Species. Journal of Natural Products, 2018, 81, 1884-1891.	3.0	10
32	Phenylethylchromones with In Vitro Antitumor Promoting Activity from Aquilaria filaria. Planta Medica, 2017, 83, 300-305.	1.3	17
33	(â^')-Neocaryachine, an Antiproliferative Pavine Alkaloid from <i>Cryptocarya laevigata</i> , Induces DNA Double-Strand Breaks. Journal of Natural Products, 2017, 80, 220-224.	3.0	25
34	Antitubulin effects of aminobenzothiophene-substituted triethylated chromones. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2731-2735.	2.2	2
35	Corymbulosins D–H, 2-Hydroxy- and 2-Oxo-clerodane Diterpenes from the Bark of Laetia corymbulosa. Journal of Natural Products, 2017, 80, 1065-1072.	3.0	11
36	A Novel Clerodane Diterpene from <i>Vitex cofassus</i> . Chemical and Pharmaceutical Bulletin, 2017, 65, 116-120.	1.3	11

#	Article	IF	CITATIONS
37	Phytoagent Deoxyelephantopin and Its Derivative Inhibit Triple Negative Breast Cancer Cell Activity through ROS-Mediated Exosomal Activity and Protein Functions. Frontiers in Pharmacology, 2017, 8, 398.	3.5	23
38	Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death. Oncotarget, 2017, 8, 56942-56958.	1.8	27
39	Novel sesquiterpene lactone analogues as potent antiâ€breast cancer agents. Molecular Oncology, 2016, 10, 921-937.	4.6	30
40	A Novel Plant Sesquiterpene Lactone Derivative, DETD-35, Suppresses BRAFV600E Mutant Melanoma Growth and Overcomes Acquired Vemurafenib Resistance in Mice. Molecular Cancer Therapeutics, 2016, 15, 1163-1176.	4.1	19
41	Triethylated chromones with substituted naphthalenes as tubulin inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 6048-6057.	3.0	15
42	Acetophenone Monomers from <i>Acronychia trifoliolata</i> . Journal of Natural Products, 2016, 79, 2883-2889.	3.0	15
43	Total Synthesis and in Vitro Anti-Tumor-Promoting Activities of Racemic Acetophenone Monomers from <i>Acronychia trifoliolata</i> . Journal of Natural Products, 2016, 79, 2890-2897.	3.0	10
44	Development of a Novel Class of Tubulin Inhibitor from Desmosdumotin B with a Hydroxylated Bicyclic B-Ring. Journal of Medicinal Chemistry, 2015, 58, 2378-2389.	6.4	60
45	Synthesis of 4-Amino-, 4-Hydroxy-, and 4-Nitro-1,3,4,5-tetrahydrobenz[cd]indols and Its Bromination. Heterocycles, 2014, 88, 493.	0.7	3
46	A-ring modified betulinic acid derivatives as potent cancer preventive agents. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1005-1008.	2.2	8
47	Isolation, Structure Determination, and Anti-HIV Evaluation of Tigliane-Type Diterpenes and Biflavonoid from <i>Stellera chamaejasme</i> . Journal of Natural Products, 2013, 76, 852-857.	3.0	51
48	Cancer preventive agents 11. Novel analogs of dimethyl dicarboxylate biphenyl as potent cancer chemopreventive agentsâ€. Pharmaceutical Biology, 2012, 50, 18-24.	2.9	2
49	Antitumor Agents. 289. Design, Synthesis, and Anti-Breast Cancer Activity in Vivo of 4-Amino-2 <i>H</i> -benzo[<i>h</i>]chromen-2-one and 4-Amino-7,8,9,10-tetrahydro-2 <i>H</i> -benzo[<i>h</i>]chromen-2-one Analogues with Improved Water Solubility, Journal of Natural Products. 2012, 75, 370-377.	3.0	11
50	Antitumor Agents. 293. Nontoxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogues Chemosensitize Multidrug-Resistant Cancer Cells to Clinical Anticancer Drugs. Journal of Medicinal Chemistry, 2012, 55, 5413-5424.	6.4	29
51	1-(3,4,5-Trimethoxyphenyl)ethane-1,2-diyl esters, a novel compound class with potent chemoreversal activity. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7726-7729.	2.2	1
52	Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4018-4022.	2.2	22
53	Antitumor Agents. 284. New Desmosdumotin B Analogues with Bicyclic B-Ring as Cytotoxic and Antitubulin Agents. Journal of Medicinal Chemistry, 2011, 54, 1244-1255.	6.4	25
54	Stelleralides A–C, Novel Potent Anti-HIV Daphnane-Type Diterpenoids from <i>Stellera chamaejasm</i> e L Organic Letters, 2011, 13, 2904-2907.	4.6	78

#	Article	IF	CITATIONS
55	Toward the Total Synthesis of Bryostatin 11: Stereoselective Construction of the C13-Exocyclic Enoate in the C1–C16 Fragment. Synthetic Communications, 2011, 41, 3032-3038.	2.1	1
56	A unique P-glycoprotein interacting agent displays anticancer activity against hepatocellular carcinoma through inhibition of GRP78 and mTOR pathways. Biochemical Pharmacology, 2011, 81, 1136-1144.	4.4	16
57	Antitumor agents 283. Further elaboration of Desmosdumotin C analogs as potent antitumor agents: Activation of spindle assembly checkpoint as possible mode of action. Bioorganic and Medicinal Chemistry, 2011, 19, 1816-1822.	3.0	14
58	Antitumor agents 281. Design, synthesis, and biological activity of substituted 4-amino-7,8,9,10-tetrahydro-2H-benzo[h]chromen-2-one analogs (ATBO) as potent in vitro anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 546-549.	2.2	15
59	Antitumor agents 279. Structure–activity relationship and in vivo studies of novel 2-(furan-2-yl)naphthalen-1-ol (FNO) analogs as potent and selective anti-breast cancer agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 52-57.	2.2	14
60	Antitumor agents 287. Substituted 4-amino-2H-pyran-2-one (APO) analogs reveal a new scaffold from neo-tanshinlactone with in vitro anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2341-2344.	2.2	33
61	Synthetic Approaches to the Bottom Half Fragment for Bryostatin 11. Synlett, 2011, 2011, 1555-1558.	1.8	4
62	Formal Synthesis of the Bryostatin Northern Hemisphere: Asymmetric Synthesis of the B Ring and C1-C9 Fragment. Synlett, 2011, 2011, 1413-1418.	1.8	7
63	Antitumor Agents 291 Expanded B-Ring Modification Study of 6,8,8-Triethyl Desmosdumotin B Analogues as Multidrug-Resistance Selective Agents. , 2011, 01, .		2
64	Antitumor agents. 271: Total synthesis and evaluation of brazilein and analogs as anti-inflammatory and cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1037-1039.	2.2	51
65	Antitumor agents 270. Novel substituted 6-phenyl-4H-furo[3,2-c]pyran-4-one derivatives as potent and highly selective anti-breast cancer agents. Bioorganic and Medicinal Chemistry, 2010, 18, 803-808.	3.0	31
66	Antitumor agents 278. 4-Amino-2H-benzo[h]chromen-2-one (ABO) analogs as potent in vitro anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4085-4087.	2.2	41
67	Antitumor agents 273. Design and synthesis of N-alkyl-thiocolchicinoids as potential antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4091-4094.	2.2	17
68	Cancer preventive agents 10. Prenylated dehydrozingerone analogs as potent chemopreventive agents. Journal of Asian Natural Products Research, 2010, 12, 227-232.	1.4	11
69	Antitumor Agents. 280. Multidrug Resistance-Selective Desmosdumotin B Analogues. Journal of Medicinal Chemistry, 2010, 53, 6699-6705.	6.4	21
70	Antitumor Agents. 272. Structureâ^'Activity Relationships and In Vivo Selective Anti-Breast Cancer Activity of Novel Neo-tanshinlactone Analogues. Journal of Medicinal Chemistry, 2010, 53, 2299-2308.	6.4	64
71	Antitumor Agents. 282. 2′-(<i>R</i>)- <i>O</i> -Acetylglaucarubinone, a Quassinoid from <i>Odyendyea gabonensis</i> As a Potential Anti-Breast and Anti-Ovarian Cancer Agent. Journal of Natural Products, 2010, 73, 1553-1558.	3.0	21
72	Cancer preventive agents 9. Betulinic acid derivatives as potent cancer chemopreventive agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3378-3381.	2.2	37

#	Article	IF	CITATIONS
73	Antitumor agents 269. Non-aromatic ring-A neotanshinlactone analog, TNO, as a new class of potent antitumor agents. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6289-6292.	2.2	30
74	Cytotoxic calanquinone A from Calanthe arisanensis and its first total synthesis. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4275-4277.	2.2	22
75	Antitumor Agents 260. New Desmosdumotin B Analogues with Improved In Vitro Anticancer Activity. Journal of Medicinal Chemistry, 2008, 51, 3297-3303.	6.4	28
76	First Total Synthesis of Protoapigenone and Its Analogues as Potent Cytotoxic Agents. Journal of Medicinal Chemistry, 2007, 50, 3921-3927.	6.4	54
77	Antitumor Agents 253. Design, Synthesis, and Antitumor Evaluation of Novel 9-Substituted Phenanthrene-Based Tylophorine Derivatives as Potential Anticancer Agents. Journal of Medicinal Chemistry, 2007, 50, 3674-3680.	6.4	79
78	Antitumor Agents 259. Design, Syntheses, and Structureâ^'Activity Relationship Study of Desmosdumotin C Analogs. Journal of Medicinal Chemistry, 2007, 50, 3354-3358.	6.4	12
79	Cancer Preventive Agents. 7. Antitumor-Promoting Effects of Seven Active Flavonolignans from Milk Thistle (<i>Silybum marianum</i> .) on Epstein-Barr Virus Activation. Pharmaceutical Biology, 2007, 45, 735-738.	2.9	9
80	Antitumor agents. 256. Conjugation of paclitaxel with other antitumor agents: Evaluation of novel conjugates as cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 2894-2898.	2.2	29
81	Antitumor agents. 258. Syntheses and evaluation of dietary antioxidant—taxoid conjugates as novel cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5204-5209.	2.2	49
82	Anti-AIDS agents 73: Structure–activity relationship study and asymmetric synthesis of 3-O-monomethylsuccinyl-betulinic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6553-6557.	2.2	31
83	Anti-tumor agents 255: Novel glycyrrhetinic acid–dehydrozingerone conjugates as cytotoxic agents. Bioorganic and Medicinal Chemistry, 2007, 15, 6193-6199.	3.0	57
84	Cancer Preventive Agents. Part 5. Anti-tumor-Promoting Effects of Coumarins and Related Compounds on Epstein-Barr Virus Activation and Two-stage Mouse Skin Carcinogenesis. Pharmaceutical Biology, 2006, 44, 178-182.	2.9	39
85	Cancer Preventive Agents. Part 6: Chemopreventive Potential of Furanocoumarins and Related Compounds. Pharmaceutical Biology, 2006, 44, 116-120.	2.9	20
86	Antitumor Agents. 254. Synthesis and Biological Evaluation of Novel Neo-tanshinlactone Analogues as Potent Anti-Breast Cancer Agents. Journal of Medicinal Chemistry, 2006, 49, 5631-5634.	6.4	81
87	Cytotoxic Alangium alkaloids from Alangium longiflorum. Phytochemistry, 2006, 67, 894-897.	2.9	12
88	Anti-AIDS agents 68. The first total synthesis of a unique potent anti-HIV chalcone from genus Desmos. Tetrahedron Letters, 2006, 47, 8263-8266.	1.4	26
89	Dehydrozingerone, Chalcone, and Isoeugenol Analogues as in Vitro Anticancer Agents#. Journal of Natural Products, 2006, 69, 1445-1449.	3.0	78
90	Antitumor agents 243. Syntheses and cytotoxicity of desmosdumotin C derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 2325-2330.	3.0	15

Κύοκο Νακάσαωα-Goto

#	Article	IF	CITATIONS
91	Total synthesis and bioactivity of unique flavone desmosdumotin B and its analogs. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3016-3019.	2.2	28
92	Total Synthesis and Bioactivity of Unique Flavone Desmosdumotin B and Its Analogues ChemInform, 2005, 36, no.	0.0	0
93	Antitumor agents. Part 236: Synthesis of water-soluble colchicine derivatives. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 235-238.	2.2	36
94	Antitumor Agents 238. Anti-tubulin and in vitro Cytotoxic Effects of N-Substituted Allocolchicinoids. Heterocycles, 2005, 65, 541.	0.7	24
95	First Total Synthesis of Desmosdumotin Câ€. Synthetic Communications, 2005, 35, 1735-1739.	2.1	15
96	Simple Total Syntheses of (-)-Ergot Alkaloids and Thier (+)-Enantiomers by a Common Synthesis Method Utilizing Optical Resolution. Heterocycles, 1997, 45, 1263.	0.7	5
97	Simple Syntheses of Marine Alkaloid, (±)-Chelonin A, and Its Analogs. Heterocycles, 1995, 41, 5.	0.7	17
98	Syntheses of (±)-4-Amino-1,3,4,5-tetrahydrobenz[cd]indole-4-carboxylic Acid, (±)-4-N,N-Dipropylamino-4-hydroxymethyl- and (±)-4-Propyloxy-1,3,4,5-tetrahydrobenz[cd]indole. Heterocycles, 1994, 38, 1479.	0.7	3
99	Synthesis of (±)-Clavicipitic Acid and Its Derivatives. Heterocycles, 1994, 37, 719.	0.7	19