
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180704/publications.pdf Version: 2024-02-01

<u> Ριιτή Δ Κερι</u>

#	Article	IF	CITATIONS
1	Focal Adhesion Kinase Provides a Collateral Vulnerability That Can Be Leveraged to Improve mTORC1 Inhibitor Efficacy. Cancers, 2022, 14, 3374.	3.7	2
2	ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis. Genes and Diseases, 2021, 8, 493-508.	3.4	34
3	Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nature Genetics, 2021, 53, 342-353.	21.4	109
4	Up to your NEK2 in CIN. Oncotarget, 2021, 12, 723-725.	1.8	0
5	TGF-β/activin signaling promotes CDK7 inhibitor resistance in triple-negative breast cancer cells through upregulation of multidrug transporters. Journal of Biological Chemistry, 2021, 297, 101162.	3.4	5
6	Centrosome Aberrations as Drivers of Chromosomal Instability in Breast Cancer. Endocrinology, 2021, 162, .	2.8	8
7	FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Cancers, 2021, 13, 5205.	3.7	23
8	Hormone Effects on Tumors. , 2020, , 667-693.		2
9	KLF4 defines the efficacy of the epidermal growth factor receptor inhibitor, erlotinib, in triple-negative breast cancer cells by repressing the EGFR gene. Breast Cancer Research, 2020, 22, 66.	5.0	11
10	The transcriptional repressor BCL11A promotes breast cancer metastasis. Journal of Biological Chemistry, 2020, 295, 11707-11719.	3.4	29
11	JAM-A functions as a female microglial tumor suppressor in glioblastoma. Neuro-Oncology, 2020, 22, 1591-1601.	1.2	26
12	LIN9 and NEK2 Are Core Regulators of Mitotic Fidelity That Can Be Therapeutically Targeted to Overcome Taxane Resistance. Cancer Research, 2020, 80, 1693-1706.	0.9	22
13	Abstract P3-02-15: Integrin a2 promotes stemness and lung metastasis in triple negative breast cancer. , 2020, , .		0
14	Abstract P2-04-01: Cyclin dependent kinase 7 (CDK7) inhibition promotes genomic instability and mitotic catastrophe in triple negative breast cancer. , 2020, , .		0
15	A Viral Nanoparticle Cancer Vaccine Delays Tumor Progression and Prolongs Survival in a HER2 ⁺ Tumor Mouse Model. Advanced Therapeutics, 2019, 2, 1800139.	3.2	25
16	The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology, 2019, 160, 1097-1110.	2.8	12
17	Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. Journal of Biological Chemistry, 2019, 294, 875-886.	3.4	46
18	The membrane tethered matrix metalloproteinase MT1-MMP triggers an outside-in DNA damage response that impacts chemo- and radiotherapy responses of breast cancer. Cancer Letters, 2019, 443, 115-124.	7.2	16

#	Article	IF	CITATIONS
19	A new view of the mammary epithelial hierarchy and its implications for breast cancer initiation and metastasis. Journal of Cancer Metastasis and Treatment, 2019, 2019, .	0.8	9
20	Abstract 172: BCL11A regulation of extracellular matrix genes may be necessary for invasion of triple-negative breast cancer. , 2019, , .		0
21	Abstract 2097: LIN9 regulation of NEK2 underlies taxol resistance in triple-negative breast cancer. , 2019, , .		0
22	A breast multi-disciplinary genomic tumor board is feasible and can provide timely and impactful recommendations. Breast Journal, 2018, 24, 676-677.	1.0	0
23	Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacological Research, 2018, 129, 156-176.	7.1	38
24	Hypothalamic–Pituitary–Mammary Gland (HPM) Axis. , 2018, , 798-807.		2
25	Expression of LC3B and FIP200/Atg17 in brain metastases of breast cancer. Journal of Neuro-Oncology, 2018, 140, 237-248.	2.9	7
26	Abstract 32: BCL11A is necessary for the expression of extracellular matrix genes and metastatic progression of triple-negative breast cancer. , 2018, , .		0
27	Abstract 2262: Inference of kinase activity for cancer phosphoproteomics using substrate prediction scores. , 2018, , .		0
28	A Bioengineered Positive Control for Rapid Detection of the Ebola Virus by Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). ACS Biomaterials Science and Engineering, 2017, 3, 452-459.	5.2	9
29	Regulatory cross-talk determines the cellular levels of 53BP1 protein, a critical factor in DNA repair. Journal of Biological Chemistry, 2017, 292, 5992-6003.	3.4	22
30	Follistatin is a metastasis suppressor in a mouse model of HER2-positive breast cancer. Breast Cancer Research, 2017, 19, 66.	5.0	32
31	Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nature Communications, 2017, 8, 14400.	12.8	93
32	Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors. Cancer Research, 2017, 77, 5395-5408.	0.9	24
33	Mutant p53 dictates the oncogenic activity of c-Abl in triple-negative breast cancers. Cell Death and Disease, 2017, 8, e2899-e2899.	6.3	16
34	BETi induction of mitotic catastrophe: towing the LIN9. Oncoscience, 2017, 4, 128-130.	2.2	4
35	Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays. Scientific Reports, 2016, 6, 23803.	3.3	20
36	Bromodomain and Extraterminal Protein Inhibition Blocks Growth of Triple-negative Breast Cancers through the Suppression of Aurora Kinases. Journal of Biological Chemistry, 2016, 291, 23756-23768.	3.4	48

#	Article	IF	CITATIONS
37	A review of the carcinogenic potential of bisphenol A. Reproductive Toxicology, 2016, 59, 167-182.	2.9	336
38	Abstract 4647: BET protein inhibition blocks growth of triple-negative breast cancer by inducing mitotic and cytokinetic dysfunction. , 2016, , .		1
39	c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression. Oncotarget, 2016, 7, 72777-72794.	1.8	17
40	Supplemental Online Pharmacology Modules Increase Recognition and Production Memory in a Hybrid Problem-Based Learning (PBL) Curriculum. Medical Science Educator, 2015, 25, 261-269.	1.5	2
41	Germline Heterozygous Variants in SEC23B Are Associated with Cowden Syndrome and Enriched in Apparently Sporadic Thyroid Cancer. American Journal of Human Genetics, 2015, 97, 661-676.	6.2	76
42	UbcH7 regulates 53BP1 stability and DSB repair. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17456-17461.	7.1	38
43	Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine, 2014, 9, 221-235.	3.3	56
44	On-Command Drug Release from Nanochains Inhibits Growth of Breast Tumors. Pharmaceutical Research, 2014, 31, 1460-1468.	3.5	13
45	GABA(A) Receptor Pi (GABRP) Stimulates Basal-like Breast Cancer Cell Migration through Activation of Extracellular-regulated Kinase 1/2 (ERK1/2). Journal of Biological Chemistry, 2014, 289, 24102-24113.	3.4	66
46	Combined SFK/mTOR Inhibition Prevents Rapamycin-Induced Feedback Activation of AKT and Elicits Efficient Tumor Regression. Cancer Research, 2014, 74, 4762-4771.	0.9	34
47	Hypomethylation of the MMP7 promoter and increased expression of MMP7 distinguishes the basal-like breast cancer subtype from other triple-negative tumors. Breast Cancer Research and Treatment, 2014, 146, 25-40.	2.5	29
48	Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine, 2014, 9, 1423-1434.	3.3	132
49	Triggered chemotherapeutic drug release from multi-component nanochains mediated by a local magnetic field. , 2013, , .		0
50	FOXA1 represses the molecular phenotype of basal breast cancer cells. Oncogene, 2013, 32, 554-563.	5.9	129
51	The HER2- and Heregulin β1 (HRG)–Inducible TNFR Superfamily Member Fn14 Promotes HRG-Driven Breast Cancer Cell Migration, Invasion, and MMP9 Expression. Molecular Cancer Research, 2013, 11, 393-404.	3.4	39
52	FOXC1 Is Enriched in the Mammary Luminal Progenitor Population, but Is Not Necessary for Mouse Mammary Ductal Morphogenesis1. Biology of Reproduction, 2013, 89, 10.	2.7	11
53	Abstract LB-221: Inhibition of rapamycin-induced feedback activation of AKT with dasatinib induces complete tumor regression in a preclinical model of breast cancer , 2013, , .		0
54	Overexpression of Follistatin in the Mouse Epididymis Disrupts Fluid Resorption and Sperm Transit in Testicular Excurrent Ducts1. Biology of Reproduction, 2012, 87, 41.	2.7	10

#	Article	IF	CITATIONS
55	FOXA1: a transcription factor with parallel functions in development and cancer. Bioscience Reports, 2012, 32, 113-130.	2.4	163
56	The Forkhead Box Transcription Factor FOXC1 Promotes Breast Cancer Invasion by Inducing Matrix Metalloprotease 7 (MMP7) Expression. Journal of Biological Chemistry, 2012, 287, 24631-24640.	3.4	76
57	Imaging Metastasis Using an Integrin-Targeting Chain-Shaped Nanoparticle. ACS Nano, 2012, 6, 8783-8795.	14.6	128
58	Enhanced Delivery of Chemotherapy to Tumors Using a Multicomponent Nanochain with Radio-Frequency-Tunable Drug Release. ACS Nano, 2012, 6, 4157-4168.	14.6	155
59	Krüppel-like Factor 4 Inhibits Tumorigenic Progression and Metastasis in a Mouse Model of Breast Cancer. Neoplasia, 2011, 13, 601-IN5.	5.3	104
60	Myosin II isoform switching mediates invasiveness after TGF-β–induced epithelial–mesenchymal transition. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17991-17996.	7.1	98
61	Bisphenol A Increases Mammary Cancer Risk in Two Distinct Mouse Models of Breast Cancer. Biology of Reproduction, 2011, 85, 490-497.	2.7	99
62	Aberrant expression of LMO4 induces centrosome amplification and mitotic spindle abnormalities in breast cancer cells. Journal of Pathology, 2010, 222, 271-281.	4.5	19
63	Krüppel-like Factor 4 Inhibits Epithelial-to-Mesenchymal Transition through Regulation of E-cadherin Gene Expression. Journal of Biological Chemistry, 2010, 285, 16854-16863.	3.4	141
64	HER2/ErbB2-induced Breast Cancer Cell Migration and Invasion Require p120 Catenin Activation of Rac1 and Cdc42. Journal of Biological Chemistry, 2010, 285, 29491-29501.	3.4	72
65	FOXA1 is an essential determinant of ERα expression and mammary ductal morphogenesis. Development (Cambridge), 2010, 137, 2045-2054.	2.5	184
66	Bisphenol A Increases Mammary Cancer Risk in Multiple Murine Models of Breast Cancer Biology of Reproduction, 2010, 83, 75-75.	2.7	6
67	The double-stranded RNA-binding protein, PACT, is required for postnatal anterior pituitary proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10696-10701.	7.1	27
68	Intrinsic bias in breast cancer gene expression data sets. BMC Cancer, 2009, 9, 214.	2.6	2
69	LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene, 2009, 28, 3608-3618.	5.9	38
70	Cell cycle correlated genes dictate the prognostic power of breast cancer gene lists. BMC Medical Genomics, 2008, 1, 11.	1.5	67
71	Ovarian hyperstimulation induces centrosome amplification and aneuploid mammary tumors independently of alterations in p53 in a transgenic mouse model of breast cancer. Oncogene, 2008, 27, 1759-1766.	5.9	11
72	The Pleiotropic Effects of Excessive Luteinizing Hormone Secretion in Transgenic Mice. Seminars in Reproductive Medicine, 2007, 25, 360-367.	1.1	0

#	Article	lF	CITATIONS
73	Rapamycin inhibits multiple stages of c-Neu/ErbB2–induced tumor progression in a transgenic mouse model of HER2-positive breast cancer. Molecular Cancer Therapeutics, 2007, 6, 2188-2197.	4.1	47
74	Increases in luteinizing hormone are associated with declines in cognitive performance. Molecular and Cellular Endocrinology, 2007, 269, 107-111.	3.2	103
75	An evaluation of evidence for the carcinogenic activity of bisphenol A. Reproductive Toxicology, 2007, 24, 240-252.	2.9	249
76	Splice variants of mIAP1 have an enhanced ability to inhibit apoptosis. Biochemical and Biophysical Research Communications, 2006, 348, 1174-1183.	2.1	9
77	Sustained trophism of the mammary gland is sufficient to accelerate and synchronize development of ErbB2/Neu-induced tumors. Oncogene, 2006, 25, 3325-3334.	5.9	25
78	Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-β signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene, 2005, 24, 5173-5190.	5.9	61
79	EB1089, a vitamin D receptor agonist, reduces proliferation and decreases tumor growth rate in a mouse model of hormone-induced mammary cancer. Cancer Letters, 2005, 229, 205-215.	7.2	24
80	Signaling through 3′,5′-Cyclic Adenosine Monophosphate and Phosphoinositide-3 Kinase Induces Sodium/Iodide Symporter Expression in Breast Cancer. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5196-5203.	3.6	27
81	High levels of luteinizing hormone analog stimulate gonadal and adrenal tumorigenesis in mice transgenic for the mouse inhibin-1±-subunit promoter/Simian virus 40 T-antigen fusion gene. Oncogene, 2003, 22, 3269-3278.	5.9	39
82	Obesity in transgenic female mice with constitutively elevated luteinizing hormone secretion. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E812-E818.	3.5	23
83	Consequences of Elevated Luteinizing Hormone on Diverse Physiological Systems: Use of the LHÂCTP Transgenic Mouse as a Model of Ovarian Hyperstimulation-induced Pathophysiology. Endocrine Reviews, 2003, 58, 343-375.	6.7	36
84	Ovulatory Surges of Human CG Prevent Hormone-Induced Granulosa Cell Tumor Formation Leading to the Identification of Tumor-Associated Changes in the Transcriptome. Molecular Endocrinology, 2002, 16, 1230-1242.	3.7	30
85	Ovarian Hyperstimulation by LH Leads to Mammary Gland Hyperplasia and Cancer Predisposition in Transgenic Mice. Endocrinology, 2002, 143, 3671-3680.	2.8	29
86	Experimental evidence that changes in oocyte growth influence meiotic chromosome segregation. Human Reproduction, 2002, 17, 1171-1180.	0.9	130
87	A Single Pitx1 Binding Site Is Essential for Activity of the LHÎ ² Promoter in Transgenic Mice. Molecular Endocrinology, 2001, 15, 734-746.	3.7	82
88	A Single Pitx1 Binding Site Is Essential for Activity of the LHÂ Promoter in Transgenic Mice. Molecular Endocrinology, 2001, 15, 734-746.	3.7	52
89	LH Hypersecreting Mice: A Model for Ovarian Granulosa Cell Tumors. Growth Hormone, 2001, , 59-78.	0.2	0
90	An NF-Y Binding Site Is Important for Basal, but Not Gonadotropin-releasing Hormone-stimulated, Expression of the Luteinizing Hormone β Subunit Gene. Journal of Biological Chemistry, 2000, 275, 13082-13088.	3.4	31

#	Article	IF	CITATIONS
91	Luteinizing hormone induction of ovarian tumors: Oligogenic differences between mouse strains dictates tumor disposition. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 383-387.	7.1	84
92	Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. Journal of Clinical Investigation, 2000, 105, 633-641.	8.2	140
93	Transgenic Mice with Chronically Elevated Luteinizing Hormone Are Infertile Due to Anovulation, Defects in Uterine Receptivity, and Midgestation Pregnancy Failure1. Endocrinology, 1999, 140, 2592-2601.	2.8	38
94	Transgenic Mice with Chronically Elevated Luteinizing Hormone Are Infertile Due to Anovulation, Defects in Uterine Receptivity, and Midgestation Pregnancy Failure. Endocrinology, 1999, 140, 2592-2601.	2.8	8
95	Characterization of the Equine Glycoprotein Hormone Alpha-Subunit Gene Reveals Divergence in the Mechanism of Pituitary and Placental Expression1. Biology of Reproduction, 1997, 57, 1104-1114.	2.7	12
96	A Steroidogenic Factor-1 Binding Site Is Required for Activity of the Luteinizing Hormone β Subunit Promoter in Gonadotropes of Transgenic Mice. Journal of Biological Chemistry, 1996, 271, 10782-10785.	3.4	151
97	Implementing Transgenic and Embryonic Stem Cell Technology to Study Gene Expression, Cell-Cell Interactions and Gene Function. Biology of Reproduction, 1995, 52, 246-257.	2.7	48
98	The proximal promoter of the bovine luteinizing hormone beta-subunit gene confers gonadotrope-specific expression and regulation by gonadotropin-releasing hormone, testosterone, and 17 beta-estradiol in transgenic mice. Molecular Endocrinology, 1994, 8, 1807-1816.	3.7	36
99	Gonadotrope- and thyrotrope-specific expression of the human and bovine glycoprotein hormone alpha-subunit genes is regulated by distinct cis- acting elements. Molecular Endocrinology, 1992, 6, 1745-1755.	3.7	32
100	Estradiol Inhibition of Expression of the Human Glycoprotein Hormone α-Subunit Gene Through an ERE-Independent Mechanism. , 1992, , 109-119.		0
101	Estradiol Inhibits Transcription of the Human Glycoprotein Hormone α-Subunit Gene Despite the Absence of a High Affinity Binding Site for Estrogen Receptor. Molecular Endocrinology, 1991, 5, 725-733.	3.7	70
102	Targeted Ablation of Pituitary Gonadotropes in Transgenic Mice. Molecular Endocrinology, 1991, 5, 2025-2036.	3.7	113
103	Different Combinations of Regulatory Elements may Explain Why Placenta-Specific Expression of the Glycoprotein Hormone α-Subunit Gene Occurs Only in Primates and Horses1. Biology of Reproduction, 1991, 44, 231-237.	2.7	34
104	CRE-Binding Proteins Interact Cooperatively to Enhance Placental-Specific Expression of the Glycoprotein Hormone Alpha-Subunit Gene. Annals of the New York Academy of Sciences, 1989, 564, 77-85.	3.8	14
105	Glycoprotein Hormones Transgenic Mice as Tools to Study Regulation and Function. , 0, , 261-295.		0