
Jerome Gattacceca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature, 2006, 441, 610-613.	27.8	578
2	The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 2006, 441, 601-605.	27.8	471
3	Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature, 2006, 442, 671-675.	27.8	410
4	Episodic fresh surface waters in the Eocene Arctic Ocean. Nature, 2006, 441, 606-609.	27.8	284
5	Miocene rotation of Sardinia: New paleomagnetic and geochronological constraints and geodynamic implications. Earth and Planetary Science Letters, 2007, 258, 359-377.	4.4	242
6	Radar-Enabled Recovery of the Sutter's Mill Meteorite, a Carbonaceous Chondrite Regolith Breccia. Science, 2012, 338, 1583-1587.	12.6	191
7	The Paris meteorite, the least altered CM chondrite so far. Geochimica Et Cosmochimica Acta, 2014, 124, 190-222.	3.9	163
8	Age model and coreâ€seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography, 2008, 23, .	3.0	157
9	Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth and Planetary Science Letters, 2004, 227, 377-393.	4.4	133
10	Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation. Space Science Reviews, 2010, 152, 341-390.	8.1	128
11	Magnetic classification of stony meteorites: 1. Ordinary chondrites. Meteoritics and Planetary Science, 2003, 38, 251-268.	1.6	125
12	Micrometeorites from the Transantarctic Mountains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18206-18211.	7.1	102
13	Tissint Martian Meteorite: A Fresh Look at the Interior, Surface, and Atmosphere of Mars. Science, 2012, 338, 785-788.	12.6	100
14	Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the United States of America, 2011, 108, 6386-6389.	7.1	97
15	Molecular Insights of Oxidation Process of Iron Nanoparticles: Spectroscopic, Magnetic, and Microscopic Evidence. Environmental Science & Technology, 2014, 48, 13888-13894.	10.0	97
16	A Long-Lived Lunar Core Dynamo. Science, 2012, 335, 453-456.	12.6	94
17	Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers. Meteoritics and Planetary Science, 2006, 41, 331-342.	1.6	85
18	An Ancient Core Dynamo in Asteroid Vesta. Science, 2012, 338, 238-241.	12.6	81

#	Article	IF	CITATIONS
19	Matching Martian crustal magnetization and magnetic properties of Martian meteorites. Meteoritics and Planetary Science, 2005, 40, 529-540.	1.6	80
20	Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios. Earth and Planetary Science Letters, 2010, 293, 313-320.	4.4	77
21	Magnetic classification of stony meteorites: 2. Nonâ€ordinary chondrites. Meteoritics and Planetary Science, 2008, 43, 959-980.	1.6	73
22	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
23	Paleomagnetism of Jurassic to Miocene sediments from the Apenninic carbonate platform (southern) Tj ETQq1 1 Letters, 2002, 201, 19-34.	0.784314 4.4	rgBT /Overlo 68
24	An impact origin for the foliation of chondrites. Earth and Planetary Science Letters, 2005, 234, 351-368.	4.4	68
25	The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Physics of the Earth and Planetary Interiors, 2007, 162, 85-98.	1.9	64
26	Persistence and origin of the lunar core dynamo. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8453-8458.	7.1	64
27	Decline of the lunar core dynamo. Earth and Planetary Science Letters, 2014, 404, 89-97.	4.4	62
28	The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian. Geochimica Et Cosmochimica Acta, 2017, 218, 1-26.	3.9	58
29	FRIPON: a worldwide network to track incoming meteoroids. Astronomy and Astrophysics, 2020, 644, A53.	5.1	58
30	An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 2015, 410, 62-74.	4.4	57
31	Chronostratigraphy and paleomagnetism of Oligo-Miocene deposits of Corsica (France) : geodynamic implications for the liguro-provencl§al basin spreading. Bulletin - Societie Geologique De France, 2003, 174, 357-371.	2.2	56
32	Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history. Meteoritics and Planetary Science, 2014, 49, 652-676.	1.6	56
33	Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth and Planetary Science Letters, 2011, 306, 241-252.	4.4	55
34	Can the lunar crust be magnetized by shock: Experimental groundtruth. Earth and Planetary Science Letters, 2010, 299, 42-53.	4.4	53
35	Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors, 2003, 140, 343-358.	1.9	51
36	Martian meteorites and Martian magnetic anomalies: A new perspective from NWA 7034. Geophysical Research Letters, 2014, 41, 4859-4864.	4.0	50

#	Article	IF	CITATIONS
37	On the efficiency of shock magnetization processes. Physics of the Earth and Planetary Interiors, 2008, 166, 1-10.	1.9	47
38	Magnetic classification of stony meteorites: 3. Achondrites. Meteoritics and Planetary Science, 2009, 44, 405-427.	1.6	47
39	Magnetic study of large Apollo samples: Possible evidence for an ancient centered dipolar field on the Moon. Earth and Planetary Science Letters, 2012, 331-332, 31-42.	4.4	46
40	Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples. Earth and Planetary Science Letters, 2010, 292, 383-391.	4.4	44
41	Constraining the Evolutionary History of the Moon and the Inner Solar System: A Case for New Returned Lunar Samples. Space Science Reviews, 2019, 215, 1.	8.1	41
42	Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth and Planetary Science Letters, 2010, 290, 90-101.	4.4	39
43	Calibration ofin situmagnetic susceptibility measurements. Geophysical Journal International, 2004, 158, 42-49.	2.4	38
44	Statistical properties of the Transantarctic Mountains (TAM) micrometeorite collection. Polar Science, 2009, 3, 100-109.	1.2	38
45	The densest meteorite collection area in hot deserts: The San Juan meteorite field (Atacama Desert,) Tj ETQq1 1	0.784314 1.6	⊦rgǥŢ /Overlo
46	The Meteoritical Bulletin, No. 104. Meteoritics and Planetary Science, 2017, 52, 2284-2284.	1.6	38
47	Experimental Simulation of Meteorite Ablation during Earth Entry Using a Plasma Wind Tunnel. Astrophysical Journal, 2017, 837, 112.	4.5	37
48	The parent body controls on cosmic spherule texture: Evidence from the oxygen isotopic compositions of large micrometeorites. Geochimica Et Cosmochimica Acta, 2017, 212, 196-210.	3.9	37
49	Magnetism of a very young lunar glass. Journal of Geophysical Research E: Planets, 2015, 120, 1720-1735.	3.6	36
50	Northwest Africa 5958: A weakly altered <scp>CM</scp> â€related ungrouped chondrite, not a <scp>Cl</scp> 3. Meteoritics and Planetary Science, 2016, 51, 851-869.	1.6	36
51	The Meteoritical Bulletin, No. 106. Meteoritics and Planetary Science, 2019, 54, 469-471.	1.6	35
52	Investigating impact demagnetization through laser impacts and SQUID microscopy. Geology, 2006, 34, 333.	4.4	34
53	Demagnetization of terrestrial and extraterrestrial rocks under hydrostatic pressure up to 1.2GPa. Physics of the Earth and Planetary Interiors, 2010, 179, 7-20.	1.9	34
54	Low temperature magnetic transition of chromite in ordinary chondrites. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	34

#	Article	IF	CITATIONS
55	New constraints on the magnetic history of the CV parent body and the solar nebula from the Kaba meteorite. Earth and Planetary Science Letters, 2016, 455, 166-175.	4.4	33
56	In situ identification, pairing, and classification of meteorites from Antarctica through magnetic susceptibility measurements. Meteoritics and Planetary Science, 2006, 41, 343-353.	1.6	32
57	Integrated chronostratigraphy of an intra-arc basin: 40Ar/39Ar datings, micropalaeontology and magnetostratigraphy of the early Miocene Castelsardo basin (northern Sardinia, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 295, 293-306.	2.3	32
58	Unraveling the simultaneous shock magnetization and demagnetization of rocks. Physics of the Earth and Planetary Interiors, 2010, 182, 42-49.	1.9	31
59	Preservation and detectability of shockâ€induced magnetization. Journal of Geophysical Research E: Planets, 2015, 120, 1461-1475.	3.6	31
60	Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Physics of the Earth and Planetary Interiors, 2015, 242, 50-64.	1.9	31
61	Impact demagnetization of the Martian crust: Current knowledge and future directions. Earth and Planetary Science Letters, 2011, 305, 257-269.	4.4	30
62	Opaque minerals, magnetic properties, and paleomagnetism of the Tissint Martian meteorite. Meteoritics and Planetary Science, 2013, 48, 1919-1936.	1.6	29
63	Density, porosity, mineralogy, and internal structure of cosmic dust and alteration of its properties during highâ€velocity atmospheric entry. Meteoritics and Planetary Science, 2014, 49, 1157-1170.	1.6	28
64	Northwest Africa 5790: Revisiting nakhlite petrogenesis. Geochimica Et Cosmochimica Acta, 2016, 190, 191-212.	3.9	28
65	The Meteoritical Bulletin, No. 105. Meteoritics and Planetary Science, 2017, 52, 2411-2411.	1.6	28
66	The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochimica Et Cosmochimica Acta, 2021, 293, 142-186.	3.9	28
67	Magnetic fabric of granitoids from Southern Corsica and Northern Sardinia and implications for Late Hercynian tectonic setting. Journal of the Geological Society, 2004, 161, 277-289.	2.1	27
68	The Meteoritical Bulletin, No. 107. Meteoritics and Planetary Science, 2020, 55, 460-462.	1.6	27
69	Description of a very dense meteorite collection area in western Atacama: Insight into the longâ€ŧerm composition of the meteorite flux to Earth. Meteoritics and Planetary Science, 2016, 51, 468-482.	1.6	26
70	The Meteoritical Bulletin, no. 108. Meteoritics and Planetary Science, 2020, 55, 1146-1150.	1.6	26
71	Reclassification of Hart and Northwest Africa 6047: Criteria for distinguishing between CV and CK3 chondrites. Meteoritics and Planetary Science, 2017, 52, 2412.	1.6	25
72	Pseudopaleosecular variation due to remanence anisotropy in a pyroclastic flow succession. Geophysical Research Letters, 2002, 29, 127-1-127-4.	4.0	24

#	Article	IF	CITATIONS
73	Pressure demagnetization of the Martian crust: Ground truth from SNC meteorites. Geophysical Research Letters, 2007, 34, .	4.0	24
74	Magnetic anisotropy of HED and Martian meteorites and implications for the crust of Vesta and Mars. Earth and Planetary Science Letters, 2008, 270, 280-289.	4.4	24
75	Magnetic field microscopy of rock samples using a giant magnetoresistance–based scanning magnetometer. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	24
76	Magnetism of Extraterrestrial Materials. Elements, 2009, 5, 223-228.	0.5	24
77	Ordinary chondrite-related giant (>800μ4m) cosmic spherules from the Transantarctic Mountains, Antarctica. Geochimica Et Cosmochimica Acta, 2011, 75, 6200-6210.	3.9	24
78	Origin of the central magnetic anomaly at the Haughton impact structure, Canada. Earth and Planetary Science Letters, 2013, 367, 116-122.	4.4	24
79	Cavezzo, the first Italian meteorite recovered by the PRISMA fireball network. Orbit, trajectory, and strewn-field. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1215-1227.	4.4	24
80	Probing the use of spectroscopy to determine the meteoritic analogues of meteors. Astronomy and Astrophysics, 2018, 613, A54.	5.1	23
81	Magnetic properties of micrometeorites. Journal of Geophysical Research, 2009, 114, .	3.3	22
82	Submarine groundwater discharge in a subsiding coastal lowland: A 226Ra and 222Rn investigation in the Southern Venice lagoon. Applied Geochemistry, 2011, 26, 907-920.	3.0	22
83	Constraining the terrestrial age of micrometeorites using their record of the Earth's magnetic field polarity. Geology, 2011, 39, 123-126.	4.4	22
84	The meteorite flux of the past 2 m.y. recorded in the Atacama Desert. Geology, 2019, 47, 673-676.	4.4	22
85	The Meteoritical Bulletin, No. 109. Meteoritics and Planetary Science, 2021, 56, 1626-1630.	1.6	22
86	Kinetics of tetrataenite disordering. Journal of Magnetism and Magnetic Materials, 2015, 375, 234-241.	2.3	21
87	Water and heat: New constraints on the evolution of the CV chondrite parent body. Geochimica Et Cosmochimica Acta, 2020, 276, 363-383.	3.9	21
88	40Ar/39Ar dating and paleomagnetism of the Miocene volcanic succession of Monte Furru (Western) Tj ETQqO Research Letters, 2001, 28, 3373-3376.	0 0 rgBT / 4.0	Overlock 10 Tf 20
89	Advances in magnetoâ€optical imaging applied to rock magnetism and paleomagnetism. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	20
90	Magnetic properties of tektites and other related impact glasses. Earth and Planetary Science Letters, 2015, 432, 381-390.	4.4	20

#	Article	lF	CITATIONS
91	Modification of <scp>REE</scp> distribution of ordinary chondrites from Atacama (Chile) and Lut (Iran) hot deserts: Insights into the chemical weathering of meteorites. Meteoritics and Planetary Science, 2017, 52, 1843-1858.	1.6	20
92	Coupling cosmogenic dating and magnetostratigraphy to constrain the chronological evolution of peri-Mediterranean karsts during the Messinian and the Pliocene: Example of ArdA¨che Valley, Southern France. Geomorphology, 2013, 189, 81-92.	2.6	19
93	Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism. Astrophysical Journal, 2020, 892, 126.	4.5	19
94	Magnetism, Iron Minerals, and Life on Mars. Astrobiology, 2006, 6, 423-436.	3.0	18
95	Magnetic study of meteorites recovered in the Atacama desert (Chile): Implications for meteorite paleomagnetism and the stability of hot desert surfaces. Physics of the Earth and Planetary Interiors, 2012, 200-201, 113-123.	1.9	18
96	Testing the genetic relationship between fluid alteration and brecciation in <scp>CM</scp> chondrites. Meteoritics and Planetary Science, 2019, 54, 1692-1709.	1.6	18
97	40Ar/39Ar dating of a Langhian biotite-rich clay layer in the pelagic sequence of the Cònero Riviera, Ancona, Italy. Earth and Planetary Science Letters, 2001, 194, 111-126.	4.4	17
98	Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert. Earth and Planetary Science Letters, 2017, 469, 15-26.	4.4	17
99	Meteorites from the Lut Desert (Iran). Meteoritics and Planetary Science, 2019, 54, 1737-1763.	1.6	17
100	Calibration of fish-eye lens and error estimation on fireball trajectories: application to the FRIPON network. Astronomy and Astrophysics, 2019, 627, A78.	5.1	17
101	Unravelling the high-altitude Nansen blue ice field meteorite trap (East Antarctica) and implications for regional palaeo-conditions. Geochimica Et Cosmochimica Acta, 2019, 248, 289-310.	3.9	17
102	Orbital scale variations and timescales from the Arctic Ocean. Paleoceanography, 2008, 23, .	3.0	16
103	Nonmagnetic high pressure cell for magnetic remanence measurements up to 1.5 GPa in a superconducting quantum interference device magnetometer. Review of Scientific Instruments, 2008, 79, 115102.	1.3	16
104	Life and death in the Chicxulub impact crater: a record of the Paleocene–Eocene Thermal Maximum. Climate of the Past, 2020, 16, 1889-1899.	3.4	16
105	Experimental shock metamorphism of the L4 ordinary chondrite Saratov induced by spherical shock waves up to $400\hat{a}\in f$ GPa. Meteoritics and Planetary Science, 2010, 45, 1007-1020.	1.6	15
106	Magnetic properties of the <scp>LL</scp> 5 ordinary chondrite Chelyabinsk (fall of February 15, 2013). Meteoritics and Planetary Science, 2014, 49, 958-977.	1.6	15
107	A nonmagnetic differentiated early planetary body. Earth and Planetary Science Letters, 2017, 468, 119-132.	4.4	15
108	Northwest Africa 11024—A heated and dehydrated unique carbonaceous (CM) chondrite. Meteoritics and Planetary Science, 2019, 54, 328-356.	1.6	15

#	Article	IF	CITATIONS
109	CV chondrites: More than one parent body. Earth and Planetary Science Letters, 2020, 547, 116467.	4.4	15
110	The Loongana (CL) group of carbonaceous chondrites. Geochimica Et Cosmochimica Acta, 2021, 304, 1-31.	3.9	15
111	The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) <scp>LL</scp> chondrite. Meteoritics and Planetary Science, 2015, 50, 1089-1111.	1.6	14
112	Impact glasses from Belize represent tektites from the Pleistocene Pantasma impact crater in Nicaragua. Communications Earth & Environment, 2021, 2, 94.	6.8	14
113	Interest and design of magnetic properties measurements on planetary and asteroidal landers. Planetary and Space Science, 2004, 52, 987-995.	1.7	13
114	Impactâ€felated noncoaxial deformation in the PuÅ,tusk H chondrite inferred from petrofabric analysis. Meteoritics and Planetary Science, 2015, 50, 401-417.	1.6	13
115	The ungrouped chondrite El Médano 301 and its comparison with other reduced ordinary chondrites. Geochimica Et Cosmochimica Acta, 2017, 218, 98-113.	3.9	13
116	Geophysical Signatures of a Roman and Early Medieval Necropolis. Archaeological Prospection, 2011, 18, 105-115.	2.2	12
117	Weathering of ordinary chondrites from the Atacama Desert, Chile, by Mössbauer spectroscopy and synchrotron radiation Xâ€ray diffraction. Meteoritics and Planetary Science, 2013, 48, 457-473.	1.6	12
118	Terrestrial Laser Scanner imaging for the cyclostratigraphy and astronomical tuning of the Ypresian–Lutetian pelagic section of Smirra (Umbria–Marche Basin, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 33-46.	2.3	12
119	Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia. Geosciences (Switzerland), 2019, 9, 225.	2.2	12
120	Visible-infrared spectroscopy of ungrouped and rare meteorites brings further constraints on meteorite-asteroid connections. Icarus, 2021, 362, 114393.	2.5	12
121	Coseismic magnetization of fault pseudotachylytes: 1. Thermal demagnetization experiments. Journal of Geophysical Research: Solid Earth, 2014, 119, 6113-6135.	3.4	11
122	Magnetic characterization of non-ideal single-domain monoclinic pyrrhotite and its demagnetization under hydrostatic pressure up to 2 GPa with implications for impact demagnetization. Physics of the Earth and Planetary Interiors, 2016, 257, 79-90.	1.9	11
123	The Piancaldoli meteorite: A forgotten primitive LL3.10 ordinary chondrite. Meteoritics and Planetary Science, 2020, 55, .	1.6	11
124	Hydrothermally enhanced magnetization at the center of the Haughton impact structure?. Meteoritics and Planetary Science, 2017, 52, 2147-2165.	1.6	10
125	Neoproterozoic paleomagnetic poles in the Taoudeni basin (West Africa). Comptes Rendus - Geoscience, 2011, 343, 284-294.	1.2	9
126	Remanent magnetization and coercivity of rocks under hydrostatic pressure up to 1.4 GPa. Geophysical Research Letters, 2013, 40, 3858-3862.	4.0	9

#	Article	IF	CITATIONS
127	Significant rotations related to cover–substratum decoupling: Example of the Dôme de Barrôt (Southwestern Alps, France). Tectonophysics, 2014, 629, 275-289.	2.2	9
128	Characteristics of the Sahara as a meteorite recovery surface. Meteoritics and Planetary Science, 2019, 54, 2908-2928.	1.6	9
129	Ferromagnetic inclusions in silicate thin films: insights into the magnetic properties of cosmic grains. Astronomy and Astrophysics, 2007, 468, L9-L12.	5.1	9
130	Geophysical and magnetoâ€structural study of the Maâdna structure (Talemzane, Algeria): Insights on its age and origin. Meteoritics and Planetary Science, 2016, 51, 2249-2273.	1.6	8
131	Contribution of early impact events to metalâ€silicate separation, thermal annealing, and volatile redistribution: Evidence in the PuÅ,tusk H chondrite. Meteoritics and Planetary Science, 2017, 52, 2305-2321.	1.6	8
132	Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies. Physics of the Earth and Planetary Interiors, 2013, 224, 1-10.	1.9	7
133	57 Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes. Hyperfine Interactions, 2014, 224, 257-262.	0.5	7
134	Caleta el Cobre 022 Martian meteorite: Increasing nakhlite diversity. Meteoritics and Planetary Science, 2020, 55, 1539-1563.	1.6	7
135	The effects of terrestrial weathering on samariumâ€neodymium isotopic composition of ordinary chondrites. Chemical Geology, 2021, 562, 120056.	3.3	7
136	NORTHWEST AFRICA (NWA) 12563 and ungrouped C2 chondrites: Alteration styles and relationships to asteroids. Geochimica Et Cosmochimica Acta, 2021, 311, 238-273.	3.9	7
137	Micrometeorites: A possible bias on the sedimentary magnetic record. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	6
138	Counterclockwise rotations in the Late Eocene–Oligocene volcanic fields of San Luis PotosÃ-and Sierra de Guanajuato (eastern Mesa Central, Mexico). Tectonophysics, 2014, 637, 289-304.	2.2	6
139	Young asteroid mixing revealed in ordinary chondrites: The case of <scp>NWA</scp> 5764, a polymict <scp>LL</scp> breccia with L clasts. Meteoritics and Planetary Science, 2017, 52, 2289-2304.	1.6	6
140	A survey of the natural remanent magnetization and magnetic susceptibility of Apollo whole rocks. Physics of the Earth and Planetary Interiors, 2019, 290, 36-43.	1.9	6
141	A case study of the May 30, 2017, Italian fireball. European Physical Journal Plus, 2020, 135, 1.	2.6	6
142	The effect of hydrostatic pressure up to 1.61 GPa on the Morin transition of hematiteâ€bearing rocks: Implications for planetary crustal magnetization. Geophysical Research Letters, 2015, 42, 10,188.	4.0	5
143	Experimental shock metamorphism of terrestrial basalts: Agglutinateâ€like particle formation, petrology, and magnetism. Meteoritics and Planetary Science, 2018, 53, 131-150.	1.6	5
144	Paleomagnetism of Rumuruti chondrites suggests a partially differentiated parent body. Earth and Planetary Science Letters, 2020, 533, 116042.	4.4	5

#	Article	IF	CITATIONS
145	Light noble gas records and cosmic ray exposure histories of recent ordinary chondrite falls. Meteoritics and Planetary Science, 0, , .	1.6	5
146	The Asco meteorite (1805): New petrographic description, chemical data, and classification. Meteoritics and Planetary Science, 2007, 42, A173.	1.6	4
147	Characterization of a calcium phospho-silicated apatite with iron oxide inclusions. Journal of Crystal Growth, 2011, 316, 164-171.	1.5	4
148	The extremely reduced silicateâ€bearing iron meteorite Northwest Africa 6583: Implications on the variety of the impact melt rocks of the <scp>IAB</scp> â€complex parent body. Meteoritics and Planetary Science, 2013, 48, 2451-2468.	1.6	4
149	Revisiting the paleomagnetism of Muong Nong layered tektites: Implications for their formation process. Meteoritics and Planetary Science, 2022, 57, 558-571.	1.6	4
150	A 650 km2 Miocene strewnfield of splash-form impact glasses in the Atacama Desert, Chile. Earth and Planetary Science Letters, 2021, 569, 117049.	4.4	4
151	Investigating S-type asteroid surfaces through reflectance spectra of ordinary chondrites. Icarus, 2022, 381, 115012.	2.5	4
152	Magnetic domains and magnetic stability of cohenite from the Morasko iron meteorite. Journal of Magnetism and Magnetic Materials, 2017, 426, 594-603.	2.3	3
153	A spinner magnetometer for large Apollo lunar samples. Review of Scientific Instruments, 2017, 88, 104502.	1.3	3
154	A Paleozoic age for the Tunnunik impact structure. Meteoritics and Planetary Science, 2019, 54, 740-751.	1.6	3
155	Paleomagnetism and rock magnetism of East and West Clearwater Lake impact structures. Canadian Journal of Earth Sciences, 2019, 56, 983-993.	1.3	2
156	Best practices for the use of meteorite names in publications. Meteoritics and Planetary Science, 2019, 54, 1397-1400.	1.6	2
157	Geophysical signature of the Tunnunik impact structure, Northwest Territories, Canada. Meteoritics and Planetary Science, 2020, 55, 480-495.	1.6	2
158	Miller Range 07687 and its place within the CM O clan. Meteoritics and Planetary Science, 2021, 56, 1758-1783.	1.6	2
159	Energy signature of ton TNT-class impacts: analysis of the 2018 December 22 fireball over Western Pyrenees. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5716-5733.	4.4	2
160	Demagnetization of Ordinary Chondrites under Hydrostatic Pressure up to 1.8 GPa. Geochemistry International, 2022, 60, 421-429.	0.7	2
161	The Karla impact structure (Russia) explored by potentialâ€field investigations. Meteoritics and Planetary Science, 2022, 57, 989-1003.	1.6	2
162	The effect of irradiation on the magnetic properties of rock and synthetic samples: Implications to irradiation of extraterrestrial materials in space. Izvestiya, Physics of the Solid Earth, 2015, 51, 336-353.	0.9	1

#	Article	IF	CITATIONS
163	Meteorite falls in Bulgaria: Reappraisal of mineralogy, chemistry, and classification. Meteoritics and Planetary Science, 2017, 52, 1649-1659.	1.6	1
164	Multiproxy Cretaceous-Paleogene boundary event stratigraphy: An Umbria-Marche basinwide perspective. , 2019, , 133-158.		1
165	The Famenin fall and other ordinary chondrites intermediate between H and L groups. Meteoritics and Planetary Science, 2022, 57, 1038-1059.	1.6	1
166	Obsidian and mafic volcanic glasses from the Philippines and Vietnam found in the Paris Museum Australasian tektite collection. Meteoritics and Planetary Science, 0, , .	1.6	1
167	The Buritizal meteorite: classification of a new Brazilian chondrite. REM: International Engineering Journal, 2017, 70, 175-180.	0.4	0
168	Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation. Space Sciences Series of ISSI, 2009, , 341-390.	0.0	0
169	57Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes. , 2013, , 251-256.		0
170	Tintigny meteorite: The first Belgian achondrite. Planetary and Space Science, 2021, 209, 105372.	1.7	0
171	Systematic sourcing of granite shafts from Gallia Narbonensis and comparison with other western Mediterranean areas. Journal of Archaeological Science: Reports, 2022, 42, 103372.	0.5	0