Thomas Ederth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3180368/publications.pdf

Version: 2024-02-01

73 papers 3,497 citations

34 h-index 138484 58 g-index

74 all docs

74 docs citations

74 times ranked 5262 citing authors

#	Article	IF	CITATIONS
1	Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100-nm range. Physical Review A, 2000, 62, .	2.5	263
2	Techniques for measuring surface forces. Advances in Colloid and Interface Science, 1996, 67, 119-183.	14.7	239
3	Poly(ethylene glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules, 2008, 9, 2775-2783.	5.4	223
4	Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films. ACS Applied Materials & Interfaces, 2015, 7, 19764-19773.	8.0	185
5	Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. Journal of Materials Chemistry C, 2015, 3, 10616-10623.	5 . 5	147
6	Elastic conducting polymer composites in thermoelectric modules. Nature Communications, 2020, 11, 1424.	12.8	134
7	Lysosomotropic agents: impact on lysosomal membrane permeabilization and cell death. Biochemical Society Transactions, 2014, 42, 1460-1464.	3.4	109
8	Oxygen-induced doping on reduced PEDOT. Journal of Materials Chemistry A, 2017, 5, 4404-4412.	10.3	97
9	Thermoelectric Properties of Polymeric Mixed Conductors. Advanced Functional Materials, 2016, 26, 6288-6296.	14.9	96
10	Self-Assembled Monolayers of Alkanethiolates on Thin Gold Films as Substrates for Surface Force Measurements. Long-Range Hydrophobic Interactions and Electrostatic Double-Layer Interactions. Langmuir, 1998, 14, 4782-4789.	3 . 5	88
11	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie - International Edition, 2020, 59, 15191-15194.	13.8	80
12	Hydration and Chain Entanglement Determines the Optimum Thickness of Poly(HEMA- <i>co</i> -PEG ₁₀ MA) Brushes for Effective Resistance to Settlement and Adhesion of Marine Fouling Organisms. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11448-11458.	8.0	77
13	Spectroelectrochemical investigation of redox states in a polypyrrole/lignin composite electrode material. Journal of Materials Chemistry A, 2015, 3, 12927-12937.	10.3	76
14	Advanced nanostructures for the control of biofouling: The FP6 EU Integrated Project AMBIO. Biointerphases, 2008, 3, IR1-IR5.	1.6	75
15	Influence of Surface Hydrophobicity on the Layer Properties of Adsorbed Nonionic Surfactants. Langmuir, 2000, 16, 2285-2291.	3 . 5	73
16	A Freeâ€Standing Highâ€Output Power Density Thermoelectric Device Based on Structureâ€Ordered PEDOT:PSS. Advanced Electronic Materials, 2018, 4, 1700496.	5.1	73
17	In Situ Wilhelmy Balance Surface Energy Determination of Poly(3-hexylthiophene) and Poly(3,4-ethylenedioxythiophene) during Electrochemical Dopingâ^'Dedoping. Langmuir, 2006, 22, 9287-9294.	3.5	70
18	Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4â€ethylenedioxythiophene) Electrodes. Advanced Sustainable Systems, 2019, 3, 1800110.	5.3	69

#	Article	IF	Citations
19	Effects of surface charge and Gibbs surface energy on the settlement behaviour of barnacle cyprids (<i>Balanus amphitrite</i>). Biofouling, 2011, 27, 1043-1055.	2.2	68
20	Saccharide-Functionalized Alkanethiols for Fouling-Resistant Self-Assembled Monolayers: Synthesis, Monolayer Properties, and Antifouling Behavior. Langmuir, 2011, 27, 15034-15047.	3.5	59
21	Influence of Wetting Properties on the Long-Range "Hydrophobic―Interaction between Self-Assembled Alkylthiolate Monolayers. Langmuir, 2000, 16, 2177-2184.	3.5	54
22	Lateral Control of Protein Adsorption on Charged Polymer Gradients. Langmuir, 2009, 25, 3755-3762.	3.5	51
23	Computation of Lifshitzâ^'van der Waals Forces between Alkylthiol Monolayers on Gold Films. Langmuir, 2001, 17, 3329-3340.	3.5	50
24	Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling. Biofouling, 2016, 32, 609-625.	2.2	48
25	Resistance of Galactoside-Terminated Alkanethiol Self-Assembled Monolayers to Marine Fouling Organisms. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3890-3901.	8.0	47
26	Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling. Journal of Materials Chemistry C, 2020, 8, 11687-11694.	5.5	45
27	Anomalous settlement behavior of <i>Ulva linza </i> zoospores on cationic oligopeptide surfaces. Biofouling, 2008, 24, 303-312.	2.2	44
28	Effect of Backbone Regiochemistry on Conductivity, Charge Density, and Polaron Structure of n-Doped Donor–Acceptor Polymers. Chemistry of Materials, 2019, 31, 3395-3406.	6.7	44
29	Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells. Advanced Energy Materials, 2014, 4, 1400643.	19.5	43
30	A mechanism for temporary bioadhesion. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4297-4306.	7.1	42
31	Resistance of Zwitterionic Peptide Monolayers to Biofouling. Langmuir, 2019, 35, 1818-1827.	3.5	41
32	Correlation between surface chemistry and settlement behaviour in barnacle cyprids (<i>Balanus) Tj ETQq0 0 0 r</i>	gBŢ <u>/</u> Overl	ock 10 Tf 50
33	Recent developments in field-effect gas sensors. Sensors and Actuators B: Chemical, 1995, 23, 127-133.	7.8	36
34	Direct force measurements on bulk polystyrene using the bimorph surface forces apparatus. Journal of Adhesion Science and Technology, 1999, 13, 79-96.	2.6	36
35	Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: AÂnovel platform for eco-friendly biofouling mitigation. Water Research, 2015, 71, 171-186.	11.3	35
36	Leadâ€Free Halide Double Perovskite Cs ₂ AgBiBr ₆ with Decreased Band Gap. Angewandte Chemie, 2020, 132, 15303-15306.	2.0	34

#	Article	IF	Citations
37	Substrate and Solution Effects on the Long-Range "Hydrophobic―Interactions between Hydrophobized Gold Surfaces. Journal of Physical Chemistry B, 2000, 104, 9704-9712.	2.6	28
38	Light-induced degradation of fullerenes in organic solar cells: a case study on TQ1:PC ₇₁ BM. Journal of Materials Chemistry A, 2018, 6, 11884-11889.	10.3	27
39	Identifying adhesive components in a model tunicate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190197.	4.0	27
40	Interactions of Zoospores of Ulva linza with Arginine-Rich Oligopeptide Monolayers. Langmuir, 2009, 25, 9375-9383.	3.5	26
41	Chemistry-specific surface adsorption of the barnacle settlement-inducing protein complex. Interface Focus, 2015, 5, 20140047.	3.0	22
42	Forces between Carboxylic Acid Surfaces in Divalent Electrolyte Solutions. Journal of Colloid and Interface Science, 2000, 229, 123-128.	9.4	20
43	Ground-state charge transfer for NIR absorption with donor/acceptor molecules: interactions mediated via energetics and orbital symmetries. Journal of Materials Chemistry C, 2017, 5, 275-281.	5.5	20
44	Confocal microscopy-based goniometry of barnacle cyprid permanent adhesive. Journal of Experimental Biology, 2013, 216, 1969-72.	1.7	19
45	pH-control of the protein resistance of thin hydrogel gradient films. Soft Matter, 2014, 10, 5955-5964.	2.7	19
46	The contraction of PEDOT films formed on a macromolecular liquid-like surface. Journal of Materials Chemistry C, 2018, 6, 654-660.	5.5	19
47	Dedoping-induced interfacial instability of poly(ethylene imine)s-treated PEDOT:PSS as a low-work-function electrode. Journal of Materials Chemistry C, 2020, 8, 328-336.	5.5	19
48	Holographic microscopy provides new insights into the settlement of zoospores of the green algaUlva linzaon cationic oligopeptide surfaces. Biofouling, 2015, 31, 229-239.	2.2	18
49	On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers. Advanced Functional Materials, 2022, 32, .	14.9	18
50	Time-Resolved Chemical Mapping in Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2017, 9, 2747-2757.	8.0	17
51	The expression and characterization of recombinant cp19k barnacle cement protein from Pollicipes pollicipes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190205.	4.0	17
52	Force Measurements between Semifluorinated Thiolate Self-Assembled Monolayers: Long-Range Hydrophobic Interactions and Surface Charge. Journal of Colloid and Interface Science, 2001, 235, 391-397.	9.4	15
53	Antialgal activity of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes against the marine alga <i>Ulva</i> . Biofouling, 2017, 33, 169-183.	2.2	14
54	Biotinyl moiety-selective polymer films with highly ordered macropores. Chemical Communications, 2013, 49, 5274.	4.1	13

#	Article	IF	CITATIONS
55	Reversible Self-Assembled Monolayers (rSAMs) as Robust and Fluidic Lipid Bilayer Mimics. Langmuir, 2018, 34, 4107-4115.	3.5	13
56	Interfacial Properties of Nonionic Surfactants and Decaneâ''Surfactant Microemulsions at the Silicaâ''Water Interface. An Ellipsometry and Surface Force Study. Journal of Physical Chemistry B, 2000, 104, 9689-9695.	2.6	12
57	Secondary Structure in de Novo Designed Peptides Induced by Electrostatic Interaction with a Lipid Bilayer Membrane. Langmuir, 2010, 26, 6437-6448.	3.5	12
58	Addressable adsorption of lipid vesicles and subsequent protein interaction studies. Biointerphases, 2008, 3, 29-37.	1.6	11
59	Filled Nanoporous Surfaces: Controlled Formation and Wettability. Langmuir, 2009, 25, 12374-12379.	3.5	10
60	Antifouling properties of oligo(lactose)-based self-assembled monolayers. Biofouling, 2015, 31, 123-134.	2.2	10
61	Synthesis of oligo(lactose)-based thiols and their self-assembly onto gold surfaces. Colloids and Surfaces B: Biointerfaces, 2013, 105, 187-193.	5.0	9
62	Imaging SPR combined with stereoscopic 3D tracking to study barnacle cyprid–surface interactions. Surface Science, 2016, 643, 172-177.	1.9	9
63	Swelling of Thin Poly(ethylene glycol)-Containing Hydrogel Films in Water Vapor—A Neutron Reflectivity Study. Langmuir, 2018, 34, 5517-5526.	3.5	9
64	Polyampholytic Poly(AEMA <i>-co</i> -SPMA) Thin Films and Their Potential for Antifouling Applications. ACS Applied Polymer Materials, 2021, 3, 5361-5372.	4.4	9
65	A Neutron Reflectivity Study of Drainage and Stratification of AOT Foam Filmsâ€. Langmuir, 2003, 19, 7727-7733.	3.5	8
66	Interaction Forces on Polyampholytic Hydrogel Gradient Surfaces. ACS Omega, 2019, 4, 5670-5681.	3.5	8
67	On the Possibility of Glue Contaminations in the Surface Force Apparatus. Journal of Colloid and Interface Science, 1999, 210, 215-217.	9.4	5
68	Interactions of the Lysosomotropic Detergent O-Methyl-Serine Dodecylamide Hydrochloride (MSDH) with Lipid Bilayer Membranes—Implications for Cell Toxicity. International Journal of Molecular Sciences, 2020, 21, 3136.	4.1	5
69	Spontaneous Vesiculation and pH-Induced Disassembly of a Lysosomotropic Detergent: Impacts on Lysosomotropism and Lysosomal Delivery. Langmuir, 2016, 32, 13566-13575.	3.5	4
70	Structure and pH-Induced Swelling of Polymer Films Prepared from Sequentially Grafted Polyelectrolytes. Langmuir, 2022, 38, 1725-1737.	3 . 5	4
71	Fabrication of a polypropylene immunoassay platform by photografting reaction. Materials Science and Engineering C, 2019, 102, 492-501.	7.3	3
72	Disentangling the Roles of Functional Domains in the Aggregation and Adsorption of the Multimodular Sea Star Adhesive Protein Sfp1. Marine Biotechnology, 2021, 23, 724-735.	2.4	3

THOMAS EDERTH

#	Article	IF	CITATIONS
73	Manufacturing Poly(3,4â€Ethylenedioxythiophene) Electrocatalytic Sheets for Largeâ€Scale H 2 O 2 Production. Advanced Sustainable Systems, 0, , 2100316.	5.3	2